1 /* 2 * Hunt - A refined core library for D programming language. 3 * 4 * Copyright (C) 2018-2019 HuntLabs 5 * 6 * Website: https://www.huntlabs.net/ 7 * 8 * Licensed under the Apache-2.0 License. 9 * 10 */ 11 12 module hunt.collection.HashMap; 13 14 import hunt.collection.AbstractMap; 15 import hunt.collection.Map; 16 import hunt.collection.Iterator; 17 18 import hunt.Exceptions; 19 import hunt.Object; 20 import hunt.util.StringBuilder; 21 import hunt.util.ObjectUtils; 22 import hunt.util.Traits; 23 24 import std.algorithm; 25 import std.conv; 26 import std.format: format; 27 import std.math; 28 import std.range; 29 import std.traits; 30 31 32 /** 33 * The maximum capacity, used if a higher value is implicitly specified 34 * by either of the constructors with arguments. 35 * MUST be a power of two <= 1<<30. 36 */ 37 private enum int MAXIMUM_CAPACITY = 1 << 30; 38 39 40 41 /** 42 * Computes key.toHash() and spreads (XORs) higher bits of hash 43 * to lower. Because the table uses power-of-two masking, sets of 44 * hashes that vary only in bits above the current mask will 45 * always collide. (Among known examples are sets of Float keys 46 * holding consecutive whole numbers in small tables.) So we 47 * apply a transform that spreads the impact of higher bits 48 * downward. There is a tradeoff between speed, utility, and 49 * quality of bit-spreading. Because many common sets of hashes 50 * are already reasonably distributed (so don't benefit from 51 * spreading), and because we use trees to handle large sets of 52 * collisions in bins, we just XOR some shifted bits in the 53 * cheapest possible way to reduce systematic lossage, as well as 54 * to incorporate impact of the highest bits that would otherwise 55 * never be used in index calculations because of table bounds. 56 */ 57 package size_t hash(K)(K key) { 58 size_t h; 59 static if(is(K == class)) { 60 return (key is null) ? 0 : (h = key.toHash()) ^ (h >>> 16); 61 } 62 else { 63 h = hashOf(key); 64 return h ^ (h >>> 16); 65 } 66 } 67 68 /** 69 * Returns x's Class if it is of the form "class C implements 70 * Comparable<C>", else null. 71 */ 72 // static Class<?> comparableClassFor(Object x) { 73 // if (x instanceof Comparable) { 74 // Class<?> c; Type[] ts, as; Type t; ParameterizedType p; 75 // if ((c = x.getClass()) == string.class) // bypass checks 76 // return c; 77 // if ((ts = c.getGenericInterfaces()) !is null) { 78 // for (int i = 0; i < ts.length; ++i) { 79 // if (((t = ts[i]) instanceof ParameterizedType) && 80 // ((p = (ParameterizedType)t).getRawType() == 81 // Comparable.class) && 82 // (as = p.getActualTypeArguments()) !is null && 83 // as.length == 1 && as[0] == c) // type arg is c 84 // return c; 85 // } 86 // } 87 // } 88 // return null; 89 // } 90 91 /** 92 * Returns k.compareTo(x) if x matches kc (k's screened comparable 93 * class), else 0. 94 */ 95 // // for cast to Comparable 96 // static int compareComparables(Class<?> kc, Object k, Object x) { 97 // return (x is null || x.getClass() != kc ? 0 : 98 // ((Comparable)k).compareTo(x)); 99 // } 100 101 /** 102 * Returns a power of two size for the given target capacity. 103 */ 104 package int tableSizeFor(int cap) { 105 int n = cap - 1; 106 n |= n >>> 1; 107 n |= n >>> 2; 108 n |= n >>> 4; 109 n |= n >>> 8; 110 n |= n >>> 16; 111 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; 112 } 113 114 /** 115 */ 116 class HashMap(K,V) : AbstractMap!(K,V) { 117 118 // private enum long serialVersionUID = 362498820763181265L; 119 120 /* 121 * Implementation notes. 122 * 123 * This map usually acts as a binned (bucketed) hash table, but 124 * when bins get too large, they are transformed into bins of 125 * TreeNodes, each structured similarly to those in 126 * java.util.TreeMap. Most methods try to use normal bins, but 127 * relay to TreeNode methods when applicable (simply by checking 128 * instanceof a node). Bins of TreeNodes may be traversed and 129 * used like any others, but additionally support faster lookup 130 * when overpopulated. However, since the vast majority of bins in 131 * normal use are not overpopulated, checking for existence of 132 * tree bins may be delayed in the course of table methods. 133 * 134 * Tree bins (i.e., bins whose elements are all TreeNodes) are 135 * ordered primarily by toHash, but in the case of ties, if two 136 * elements are of the same "class C implements Comparable<C>", 137 * type then their compareTo method is used for ordering. (We 138 * conservatively check generic types via reflection to validate 139 * this -- see method comparableClassFor). The added complexity 140 * of tree bins is worthwhile in providing worst-case O(log n) 141 * operations when keys either have distinct hashes or are 142 * orderable, Thus, performance degrades gracefully under 143 * accidental or malicious usages in which toHash() methods 144 * return values that are poorly distributed, as well as those in 145 * which many keys share a toHash, so long as they are also 146 * Comparable. (If neither of these apply, we may waste about a 147 * factor of two in time and space compared to taking no 148 * precautions. But the only known cases stem from poor user 149 * programming practices that are already so slow that this makes 150 * little difference.) 151 * 152 * Because TreeNodes are about twice the size of regular nodes, we 153 * use them only when bins contain enough nodes to warrant use 154 * (see TREEIFY_THRESHOLD). And when they become too small (due to 155 * removal or resizing) they are converted back to plain bins. In 156 * usages with well-distributed user hashCodes, tree bins are 157 * rarely used. Ideally, under random hashCodes, the frequency of 158 * nodes in bins follows a Poisson distribution 159 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a 160 * parameter of about 0.5 on average for the default resizing 161 * threshold of 0.75, although with a large variance because of 162 * resizing granularity. Ignoring variance, the expected 163 * occurrences of list size k are (exp(-0.5) * pow(0.5, k) / 164 * factorial(k)). The first values are: 165 * 166 * 0: 0.60653066 167 * 1: 0.30326533 168 * 2: 0.07581633 169 * 3: 0.01263606 170 * 4: 0.00157952 171 * 5: 0.00015795 172 * 6: 0.00001316 173 * 7: 0.00000094 174 * 8: 0.00000006 175 * more: less than 1 in ten million 176 * 177 * The root of a tree bin is normally its first node. However, 178 * sometimes (currently only upon Iterator.remove), the root might 179 * be elsewhere, but can be recovered following parent links 180 * (method TreeNode.root()). 181 * 182 * All applicable internal methods accept a hash code as an 183 * argument (as normally supplied from a method), allowing 184 * them to call each other without recomputing user hashCodes. 185 * Most internal methods also accept a "tab" argument, that is 186 * normally the current table, but may be a new or old one when 187 * resizing or converting. 188 * 189 * When bin lists are treeified, split, or untreeified, we keep 190 * them in the same relative access/traversal order (i.e., field 191 * Node.next) to better preserve locality, and to slightly 192 * simplify handling of splits and traversals that invoke 193 * iterator.remove. When using comparators on insertion, to keep a 194 * total ordering (or as close as is required here) across 195 * rebalancings, we compare classes and identityHashCodes as 196 * tie-breakers. 197 * 198 * The use and transitions among plain vs tree modes is 199 * complicated by the existence of subclass LinkedHashMap. See 200 * below for hook methods defined to be invoked upon insertion, 201 * removal and access that allow LinkedHashMap internals to 202 * otherwise remain independent of these mechanics. (This also 203 * requires that a map instance be passed to some utility methods 204 * that may create new nodes.) 205 * 206 * The concurrent-programming-like SSA-based coding style helps 207 * avoid aliasing errors amid all of the twisty pointer operations. 208 */ 209 210 /** 211 * The default initial capacity - MUST be a power of two. 212 */ 213 enum int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 214 215 216 /** 217 * The load factor used when none specified in constructor. 218 */ 219 enum float DEFAULT_LOAD_FACTOR = 0.75f; 220 221 /** 222 * The bin count threshold for using a tree rather than list for a 223 * bin. Bins are converted to trees when adding an element to a 224 * bin with at least this many nodes. The value must be greater 225 * than 2 and should be at least 8 to mesh with assumptions in 226 * tree removal about conversion back to plain bins upon 227 * shrinkage. 228 */ 229 enum int TREEIFY_THRESHOLD = 8; 230 231 /** 232 * The smallest table capacity for which bins may be treeified. 233 * (Otherwise the table is resized if too many nodes in a bin.) 234 * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts 235 * between resizing and treeification thresholds. 236 */ 237 enum int MIN_TREEIFY_CAPACITY = 64; 238 239 /* ---------------- Static utilities -------------- */ 240 241 242 /* ---------------- Fields -------------- */ 243 244 /** 245 * The table, initialized on first use, and resized as 246 * necessary. When allocated, length is always a power of two. 247 * (We also tolerate length zero in some operations to allow 248 * bootstrapping mechanics that are currently not needed.) 249 */ 250 HashMapNode!(K,V)[] table; 251 252 /** 253 * Holds cached entrySet(). Note that AbstractMap fields are used 254 * for keySet() and values(). 255 */ 256 // Set<MapEntry!(K,V)> entrySet; 257 258 /** 259 * The number of key-value mappings contained in this map. 260 */ 261 // int _size; 262 263 /** 264 * The number of times this HashMap has been structurally modified 265 * Structural modifications are those that change the number of mappings in 266 * the HashMap or otherwise modify its internal structure (e.g., 267 * rehash). This field is used to make iterators on Collection-views of 268 * the HashMap fail-fast. (See ConcurrentModificationException). 269 */ 270 int modCount; 271 272 /** 273 * The next size value at which to resize (capacity * load factor). 274 * 275 * @serial 276 */ 277 // (The javadoc description is true upon serialization. 278 // Additionally, if the table array has not been allocated, this 279 // field holds the initial array capacity, or zero signifying 280 // DEFAULT_INITIAL_CAPACITY.) 281 int threshold; 282 283 /** 284 * The load factor for the hash table. 285 * 286 * @serial 287 */ 288 float loadFactor; 289 290 /* ---------------- Public operations -------------- */ 291 292 /** 293 * Constructs an empty <tt>HashMap</tt> with the specified initial 294 * capacity and load factor. 295 * 296 * @param initialCapacity the initial capacity 297 * @param loadFactor the load factor 298 * @throws IllegalArgumentException if the initial capacity is negative 299 * or the load factor is nonpositive 300 */ 301 this(int initialCapacity, float loadFactor) { 302 if (initialCapacity < 0) 303 throw new IllegalArgumentException("Illegal initial capacity: " ~ 304 initialCapacity.to!string()); 305 if (initialCapacity > MAXIMUM_CAPACITY) 306 initialCapacity = MAXIMUM_CAPACITY; 307 if (loadFactor <= 0 || isNaN(loadFactor)) 308 throw new IllegalArgumentException("Illegal load factor: " ~ 309 loadFactor.to!string()); 310 this.loadFactor = loadFactor; 311 this.threshold = tableSizeFor(initialCapacity); 312 } 313 314 /** 315 * Constructs an empty <tt>HashMap</tt> with the specified initial 316 * capacity and the default load factor (0.75). 317 * 318 * @param initialCapacity the initial capacity. 319 * @throws IllegalArgumentException if the initial capacity is negative. 320 */ 321 this(int initialCapacity) { 322 this(initialCapacity, DEFAULT_LOAD_FACTOR); 323 } 324 325 /** 326 * Constructs an empty <tt>HashMap</tt> with the default initial capacity 327 * (16) and the default load factor (0.75). 328 */ 329 this() { 330 this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted 331 } 332 333 /** 334 * Constructs a new <tt>HashMap</tt> with the same mappings as the 335 * specified <tt>Map</tt>. The <tt>HashMap</tt> is created with 336 * default load factor (0.75) and an initial capacity sufficient to 337 * hold the mappings in the specified <tt>Map</tt>. 338 * 339 * @param m the map whose mappings are to be placed in this map 340 * @throws NullPointerException if the specified map is null 341 */ 342 this(Map!(K, V) m) { 343 this.loadFactor = DEFAULT_LOAD_FACTOR; 344 putMapEntries(m, false); 345 } 346 347 this(V[K] m) { 348 this.loadFactor = DEFAULT_LOAD_FACTOR; 349 putMapEntries(m, false); 350 } 351 352 /** 353 * Implements Map.putAll and Map constructor 354 * 355 * @param m the map 356 * @param evict false when initially constructing this map, else 357 * true (relayed to method afterNodeInsertion). 358 */ 359 final void putMapEntries(Map!(K, V) m, bool evict) { 360 assert(m !is null); 361 int s = m.size(); 362 if (s > 0) { 363 if (table is null) { // pre-size 364 float ft = (cast(float)s / loadFactor) + 1.0F; 365 int t = ((ft < cast(float)MAXIMUM_CAPACITY) ? 366 cast(int)ft : MAXIMUM_CAPACITY); 367 if (t > threshold) 368 threshold = tableSizeFor(t); 369 } 370 else if (s > threshold) 371 resize(); 372 foreach(K key, V value; m) { 373 putVal(hash(key), key, value, false, evict); 374 } 375 } 376 } 377 378 final void putMapEntries(V[K] m, bool evict) { 379 int s = cast(int)m.length; 380 if (s > 0) { 381 if (table is null) { // pre-size 382 float ft = (cast(float)s / loadFactor) + 1.0F; 383 int t = ((ft < cast(float)MAXIMUM_CAPACITY) ? 384 cast(int)ft : MAXIMUM_CAPACITY); 385 if (t > threshold) 386 threshold = tableSizeFor(t); 387 } 388 else if (s > threshold) 389 resize(); 390 foreach(K key, V value; m) { 391 putVal(hash(key), key, value, false, evict); 392 } 393 } 394 } 395 396 397 /** 398 * Returns the value to which the specified key is mapped, 399 * or {@code null} if this map contains no mapping for the key. 400 * 401 * <p>More formally, if this map contains a mapping from a key 402 * {@code k} to a value {@code v} such that {@code (key==null ? k==null : 403 * key.equals(k))}, then this method returns {@code v}; otherwise 404 * it returns {@code null}. (There can be at most one such mapping.) 405 * 406 * <p>A return value of {@code null} does not <i>necessarily</i> 407 * indicate that the map contains no mapping for the key; it's also 408 * possible that the map explicitly maps the key to {@code null}. 409 * The {@link #containsKey containsKey} operation may be used to 410 * distinguish these two cases. 411 * 412 * @see #put(Object, Object) 413 */ 414 override V get(K key) { 415 HashMapNode!(K, V) e = getNode(hash(key), key); 416 static if(is(V == class) || is(V == interface) || isSomeString!(V)) { 417 return e is null ? V.init : e.value; 418 } else { 419 if(e is null) { 420 throw new NoSuchElementException(key.to!string()); 421 } 422 return e.value; 423 } 424 } 425 426 /** 427 * Implements Map.get and related methods 428 * 429 * @param hash hash for key 430 * @param key the key 431 * @return the node, or null if none 432 */ 433 final HashMapNode!(K, V) getNode(size_t hash, K key) { 434 HashMapNode!(K, V)[] tab; HashMapNode!(K, V) first, e; size_t n; K k; 435 if ((tab = table) !is null && (n = tab.length) > 0 && 436 (first = tab[(n - 1) & hash]) !is null) { 437 k = first.key; 438 if (first.hash == hash && // always check first node 439 k == key ) 440 return first; 441 if ((e = first.next) !is null) { 442 auto tempNode = cast(TreeNode!(K, V))first; 443 if (tempNode !is null) 444 return tempNode.getTreeNode(hash, key); 445 do { 446 k = e.key; 447 if (e.hash == hash && k == key) 448 return e; 449 } while ((e = e.next) !is null); 450 } 451 } 452 return null; 453 } 454 455 /** 456 * Returns <tt>true</tt> if this map contains a mapping for the 457 * specified key. 458 * 459 * @param key The key whose presence in this map is to be tested 460 * @return <tt>true</tt> if this map contains a mapping for the specified 461 * key. 462 */ 463 override bool containsKey(K key) { 464 return getNode(hash(key), key) !is null; 465 } 466 467 /** 468 * Associates the specified value with the specified key in this map. 469 * If the map previously contained a mapping for the key, the old 470 * value is replaced. 471 * 472 * @param key key with which the specified value is to be associated 473 * @param value value to be associated with the specified key 474 * @return the previous value associated with <tt>key</tt>, or 475 * <tt>null</tt> if there was no mapping for <tt>key</tt>. 476 * (A <tt>null</tt> return can also indicate that the map 477 * previously associated <tt>null</tt> with <tt>key</tt>.) 478 */ 479 override V put(K key, V value) { 480 return putVal(hash(key), key, value, false, true); 481 } 482 483 /** 484 * Implements Map.put and related methods 485 * 486 * @param hash hash for key 487 * @param key the key 488 * @param value the value to put 489 * @param onlyIfAbsent if true, don't change existing value 490 * @param evict if false, the table is in creation mode. 491 * @return previous value, or null if none 492 */ 493 final V putVal(size_t hash, K key, V value, bool onlyIfAbsent, bool evict) { 494 HashMapNode!(K, V)[] tab; HashMapNode!(K, V) p; 495 size_t n; 496 if ((tab = table) is null || (n = tab.length) == 0) 497 n = (tab = resize()).length; 498 499 size_t i = (n - 1) & hash; 500 if ((p = tab[i]) is null) { 501 tab[i] = newNode(hash, key, value, null); 502 } 503 else { 504 HashMapNode!(K, V) e; K k; 505 k = p.key; 506 if (p.hash == hash && k == key) 507 e = p; 508 else{ 509 TreeNode!(K, V) pp = cast(TreeNode!(K, V))p; 510 if (pp !is null) 511 e = pp.putTreeVal(this, tab, hash, key, value); 512 else { 513 for (int binCount = 0; ; ++binCount) { 514 if ((e = p.next) is null) { 515 p.next = newNode(hash, key, value, null); 516 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st 517 treeifyBin(tab, hash); 518 break; 519 } 520 k = e.key; 521 if (e.hash == hash && k == key ) 522 break; 523 p = e; 524 } 525 } 526 } 527 528 if (e !is null) { // existing mapping for key 529 V oldValue = e.value; 530 static if( is(V == class)) { 531 if (!onlyIfAbsent || oldValue is null) 532 e.value = value; 533 } 534 else { 535 if (!onlyIfAbsent) 536 e.value = value; 537 } 538 afterNodeAccess(e); 539 return oldValue; 540 } 541 } 542 ++modCount; 543 if (++_size > threshold) 544 resize(); 545 afterNodeInsertion(evict); 546 return V.init; 547 } 548 549 550 /** 551 * Initializes or doubles table size. If null, allocates in 552 * accord with initial capacity target held in field threshold. 553 * Otherwise, because we are using power-of-two expansion, the 554 * elements from each bin must either stay at same index, or move 555 * with a power of two offset in the new table. 556 * 557 * @return the table 558 */ 559 final HashMapNode!(K,V)[] resize() { 560 HashMapNode!(K,V)[] oldTab = table; 561 int oldCap = (oldTab is null) ? 0 : cast(int)oldTab.length; 562 int oldThr = threshold; 563 int newCap, newThr = 0; 564 if (oldCap > 0) { 565 if (oldCap >= MAXIMUM_CAPACITY) { 566 threshold = int.max; 567 return oldTab; 568 } 569 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && 570 oldCap >= DEFAULT_INITIAL_CAPACITY) 571 newThr = oldThr << 1; // double threshold 572 } 573 else if (oldThr > 0) // initial capacity was placed in threshold 574 newCap = oldThr; 575 else { // zero initial threshold signifies using defaults 576 newCap = DEFAULT_INITIAL_CAPACITY; 577 newThr = cast(int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); 578 } 579 if (newThr == 0) { 580 float ft = cast(float)newCap * loadFactor; 581 newThr = (newCap < MAXIMUM_CAPACITY && ft < cast(float)MAXIMUM_CAPACITY ? 582 cast(int)ft : int.max); 583 } 584 threshold = newThr; 585 586 HashMapNode!(K,V)[] newTab = new HashMapNode!(K,V)[newCap]; 587 TreeNode!(K,V) ee; 588 table = newTab; 589 if (oldTab !is null) { 590 for (int j = 0; j < oldCap; ++j) { 591 HashMapNode!(K,V) e; 592 if ((e = oldTab[j]) !is null) { 593 oldTab[j] = null; 594 if (e.next is null) 595 newTab[e.hash & (newCap - 1)] = e; 596 else if ((ee = cast(TreeNode!(K,V))e) !is null) 597 ee.split(this, newTab, j, oldCap); 598 else { // preserve order 599 HashMapNode!(K,V) loHead = null, loTail = null; 600 HashMapNode!(K,V) hiHead = null, hiTail = null; 601 HashMapNode!(K,V) next; 602 do { 603 next = e.next; 604 if ((e.hash & oldCap) == 0) { 605 if (loTail is null) 606 loHead = e; 607 else 608 loTail.next = e; 609 loTail = e; 610 } 611 else { 612 if (hiTail is null) 613 hiHead = e; 614 else 615 hiTail.next = e; 616 hiTail = e; 617 } 618 } while ((e = next) !is null); 619 if (loTail !is null) { 620 loTail.next = null; 621 newTab[j] = loHead; 622 } 623 if (hiTail !is null) { 624 hiTail.next = null; 625 newTab[j + oldCap] = hiHead; 626 } 627 } 628 } 629 } 630 } 631 return newTab; 632 } 633 634 /** 635 * Replaces all linked nodes in bin at index for given hash unless 636 * table is too small, in which case resizes instead. 637 */ 638 final void treeifyBin(HashMapNode!(K,V)[] tab, size_t hash) { 639 size_t n, index; HashMapNode!(K,V) e; 640 if (tab is null || (n = tab.length) < MIN_TREEIFY_CAPACITY) 641 resize(); 642 else if ((e = tab[index = (n - 1) & hash]) !is null) { 643 TreeNode!(K,V) hd = null, tl = null; 644 do { 645 TreeNode!(K,V) p = replacementTreeNode(e, null); 646 if (tl is null) 647 hd = p; 648 else { 649 p.prev = tl; 650 tl.next = p; 651 } 652 tl = p; 653 } while ((e = e.next) !is null); 654 if ((tab[index] = hd) !is null) 655 hd.treeify(tab); 656 } 657 } 658 659 /** 660 * Copies all of the mappings from the specified map to this map. 661 * These mappings will replace any mappings that this map had for 662 * any of the keys currently in the specified map. 663 * 664 * @param m mappings to be stored in this map 665 * @throws NullPointerException if the specified map is null 666 */ 667 // override void putAll(Map!(K, V) m) { 668 // putMapEntries(m, true); 669 // } 670 671 /** 672 * Removes the mapping for the specified key from this map if present. 673 * 674 * @param key key whose mapping is to be removed from the map 675 * @return the previous value associated with <tt>key</tt>, or 676 * <tt>null</tt> if there was no mapping for <tt>key</tt>. 677 * (A <tt>null</tt> return can also indicate that the map 678 * previously associated <tt>null</tt> with <tt>key</tt>.) 679 */ 680 override V remove(K key) { 681 HashMapNode!(K,V) e = removeNode(hash(key), key, V.init, false, true); 682 return e is null ? V.init : e.value; 683 } 684 685 alias remove = AbstractMap!(K, V).remove; 686 687 /** 688 * Implements Map.remove and related methods 689 * 690 * @param hash hash for key 691 * @param key the key 692 * @param value the value to match if matchValue, else ignored 693 * @param matchValue if true only remove if value is equal 694 * @param movable if false do not move other nodes while removing 695 * @return the node, or null if none 696 */ 697 final HashMapNode!(K,V) removeNode(size_t hash, K key, V value, 698 bool matchValue, bool movable) { 699 HashMapNode!(K,V)[] tab; HashMapNode!(K,V) p; 700 size_t n, index; 701 if ((tab = table) !is null && (n = tab.length) > 0 && 702 (p = tab[index = (n - 1) & hash]) !is null) { 703 HashMapNode!(K,V) node = null, e; K k; V v; 704 k = p.key; 705 if (p.hash == hash && k == key ) 706 node = p; 707 else if ((e = p.next) !is null) { 708 TreeNode!(K,V) pp = cast(TreeNode!(K,V))p; 709 if (pp !is null) 710 node = pp.getTreeNode(hash, key); 711 else { 712 do { 713 k = e.key; 714 if (e.hash == hash && k == key ) { 715 node = e; 716 break; 717 } 718 p = e; 719 } while ((e = e.next) !is null); 720 } 721 } 722 if (node !is null && (!matchValue || (v = node.value) == value)) { 723 auto _node = cast(TreeNode!(K,V))node; 724 if (_node !is null) 725 _node.removeTreeNode(this, tab, movable); 726 else if (node == p) 727 tab[index] = node.next; 728 else 729 p.next = node.next; 730 ++modCount; 731 --_size; 732 afterNodeRemoval(node); 733 return node; 734 } 735 } 736 return null; 737 } 738 739 /** 740 * Removes all of the mappings from this map. 741 * The map will be empty after this call returns. 742 */ 743 override void clear() { 744 HashMapNode!(K,V)[] tab; 745 modCount++; 746 if ((tab = table) !is null && size > 0) { 747 _size = 0; 748 for (size_t i = 0; i < tab.length; ++i) 749 tab[i] = null; 750 } 751 } 752 753 /** 754 * Returns <tt>true</tt> if this map maps one or more keys to the 755 * specified value. 756 * 757 * @param value value whose presence in this map is to be tested 758 * @return <tt>true</tt> if this map maps one or more keys to the 759 * specified value 760 */ 761 override bool containsValue(V value) { 762 HashMapNode!(K, V)[] tab; V v; 763 if ((tab = table) !is null && size > 0) { 764 for (size_t i = 0; i < tab.length; ++i) { 765 for (HashMapNode!(K, V) e = tab[i]; e !is null; e = e.next) { 766 v = e.value; 767 // if ((v = e.value) == value || 768 // (value !is null && value == v)) 769 if(v == value) 770 return true; 771 } 772 } 773 } 774 return false; 775 } 776 777 778 /** 779 * Returns a shallow copy of this {@code HashMap} instance: the keys and 780 * values themselves are not cloned. 781 * 782 * @return a shallow copy of this map 783 */ 784 mixin CloneMemberTemplate!(typeof(this), TopLevel.no, (typeof(this) from, typeof(this) to) { 785 to.reinitialize(); 786 to.putMapEntries(from, false); 787 }); 788 789 /* ------------------------------------------------------------ */ 790 // iterators 791 792 override int opApply(scope int delegate(ref K, ref V) dg) { 793 if(dg is null) 794 throw new NullPointerException(); 795 HashMapNode!(K, V)[] tab = table; 796 797 int result = 0; 798 if(_size > 0 && tab !is null) { 799 int mc = modCount; 800 for(size_t i=0; i<tab.length; i++) { 801 for(HashMapNode!(K, V) e = tab[i]; e !is null; e = e.next) { 802 result = dg(e.key, e.value); 803 if(result != 0) return result; 804 } 805 } 806 807 if(modCount != mc) 808 throw new ConcurrentModificationException(); 809 } 810 811 return result; 812 } 813 814 override int opApply(scope int delegate(MapEntry!(K, V) entry) dg) { 815 if(dg is null) 816 throw new NullPointerException(""); 817 HashMapNode!(K, V)[] tab = table; 818 819 if(_size <= 0 || tab is null) 820 return 0; 821 822 int result = 0; 823 int mc = modCount; 824 for(size_t i=0; i<tab.length; i++) { 825 for(HashMapNode!(K, V) e = tab[i]; e !is null; e = e.next) { 826 result = dg(e); 827 if(result != 0) return result; 828 } 829 } 830 831 if(modCount != mc) 832 throw new ConcurrentModificationException(""); 833 834 return result; 835 } 836 837 838 /** 839 * Returns a {@link Set} view of the keys contained in this map. 840 * The set is backed by the map, so changes to the map are 841 * reflected in the set, and vice-versa. If the map is modified 842 * while an iteration over the set is in progress (except through 843 * the iterator's own <tt>remove</tt> operation), the results of 844 * the iteration are undefined. The set supports element removal, 845 * which removes the corresponding mapping from the map, via the 846 * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, 847 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> 848 * operations. It does not support the <tt>add</tt> or <tt>addAll</tt> 849 * operations. 850 * 851 * @return a set view of the keys contained in this map 852 */ 853 override InputRange!K byKey() { 854 return new KeyInputRange(); 855 } 856 857 override InputRange!V byValue() { 858 return new ValueInputRange(); 859 } 860 861 862 mixin template HashIterator() { 863 protected HashMapNode!(K, V) next; // next entry to return 864 protected HashMapNode!(K, V) current; // current entry 865 protected int expectedModCount; // for fast-fail 866 protected int index; // current slot 867 868 this() { 869 expectedModCount = modCount; 870 HashMapNode!(K, V)[] t = table; 871 next = null; 872 index = 0; 873 if (t !is null && size > 0) { // advance to first entry 874 do {} while (index < t.length && (next = t[index++]) is null); 875 } 876 current = next; 877 } 878 879 final bool empty() { 880 return next is null; 881 } 882 883 void popFront() { 884 HashMapNode!(K, V)[] t; 885 HashMapNode!(K, V) e = next; 886 if (modCount != expectedModCount) 887 throw new ConcurrentModificationException(); 888 if (e is null) 889 throw new NoSuchElementException(); 890 if ((next = (current = e).next) is null && (t = table) !is null) { 891 do {} while (index < t.length && (next = t[index++]) is null); 892 } 893 } 894 } 895 896 final class KeyInputRange : InputRange!K { 897 mixin HashIterator; 898 899 final K front() @property { return next.key; } 900 901 // https://forum.dlang.org/thread/amzthhonuozlobghqqgk@forum.dlang.org?page=1 902 // https://issues.dlang.org/show_bug.cgi?id=18036 903 final K moveFront() @property { throw new NotSupportedException(); } 904 905 int opApply(scope int delegate(K) dg) { 906 if(dg is null) 907 throw new NullPointerException(""); 908 909 if(_size <= 0 || table is null) 910 return 0; 911 912 HashMapNode!(K, V)[] tab = table; 913 int result = 0; 914 int mc = modCount; 915 for(size_t i=0; i<tab.length; i++) { 916 for(HashMapNode!(K, V) e = tab[i]; e !is null; e = e.next) { 917 result = dg(e.key); 918 if(result != 0) return result; 919 } 920 } 921 922 if(modCount != mc) 923 throw new ConcurrentModificationException(""); 924 925 return result; 926 } 927 928 int opApply(scope int delegate(size_t, K) dg) { 929 if(dg is null) 930 throw new NullPointerException(""); 931 932 if(_size <= 0 || table is null) 933 return 0; 934 935 HashMapNode!(K, V)[] tab = table; 936 int result = 0; 937 int mc = modCount; 938 size_t index = 0; 939 940 for(size_t i=0; i<tab.length; i++) { 941 for(HashMapNode!(K, V) e = tab[i]; e !is null; e = e.next) { 942 result = dg(index++, e.key); 943 if(result != 0) return result; 944 } 945 } 946 947 if(modCount != mc) 948 throw new ConcurrentModificationException(""); 949 950 return result; 951 } 952 } 953 954 final class ValueInputRange : InputRange!V { 955 mixin HashIterator; 956 957 final V front() @property { return next.value; } 958 959 final V moveFront() @property { throw new NotSupportedException(); } 960 961 int opApply(scope int delegate(V) dg) { 962 if(dg is null) 963 throw new NullPointerException("No handler avaliable"); 964 965 if(_size <= 0 || table is null) 966 return 0; 967 968 HashMapNode!(K, V)[] tab = table; 969 int result = 0; 970 int mc = modCount; 971 for(size_t i=0; i<tab.length; i++) 972 { 973 for(HashMapNode!(K, V) e = tab[i]; e !is null; e = e.next) 974 { 975 result = dg(e.value); 976 if(result != 0) return result; 977 } 978 } 979 980 if(modCount != mc) 981 throw new ConcurrentModificationException(""); 982 983 return result; 984 } 985 986 int opApply(scope int delegate(size_t, V) dg) { 987 if(dg is null) 988 throw new NullPointerException(""); 989 990 if(_size <= 0 || table is null) 991 return 0; 992 993 HashMapNode!(K, V)[] tab = table; 994 int result = 0; 995 int mc = modCount; 996 size_t index = 0; 997 for(size_t i=0; i<tab.length; i++) { 998 for(HashMapNode!(K, V) e = tab[i]; e !is null; e = e.next) 999 { 1000 result = dg(index++, e.value); 1001 if(result != 0) return result; 1002 } 1003 } 1004 1005 if(modCount != mc) 1006 throw new ConcurrentModificationException(""); 1007 1008 return result; 1009 } 1010 } 1011 1012 /* ------------------------------------------------------------ */ 1013 // LinkedHashMap support 1014 1015 /* 1016 * The following package-protected methods are designed to be 1017 * overridden by LinkedHashMap, but not by any other subclass. 1018 * Nearly all other internal methods are also package-protected 1019 * but are declared final, so can be used by LinkedHashMap, view 1020 * classes, and HashSet. 1021 */ 1022 1023 // Create a regular (non-tree) node 1024 HashMapNode!(K,V) newNode(size_t hash, K key, V value, HashMapNode!(K,V) next) { 1025 return new HashMapNode!(K,V)(hash, key, value, next); 1026 } 1027 1028 // For conversion from TreeNodes to plain nodes 1029 HashMapNode!(K,V) replacementNode(HashMapNode!(K,V) p, HashMapNode!(K,V) next) { 1030 return new HashMapNode!(K,V)(p.hash, p.key, p.value, next); 1031 } 1032 1033 // Create a tree bin node 1034 TreeNode!(K,V) newTreeNode(size_t hash, K key, V value, HashMapNode!(K,V) next) { 1035 return new TreeNode!(K,V)(hash, key, value, next); 1036 } 1037 1038 // For treeifyBin 1039 TreeNode!(K,V) replacementTreeNode(HashMapNode!(K,V) p, HashMapNode!(K,V) next) { 1040 return new TreeNode!(K,V)(p.hash, p.key, p.value, next); 1041 } 1042 1043 /** 1044 * Reset to initial default state. Called by clone and readObject. 1045 */ 1046 void reinitialize() { 1047 table = null; 1048 // entrySet = null; 1049 // _keySet = null; 1050 // _values = null; 1051 modCount = 0; 1052 threshold = 0; 1053 _size = 0; 1054 } 1055 1056 // Callbacks to allow LinkedHashMap post-actions 1057 void afterNodeAccess(HashMapNode!(K,V) p) { } 1058 void afterNodeInsertion(bool evict) { } 1059 void afterNodeRemoval(HashMapNode!(K,V) p) { } 1060 1061 // Called only from writeObject, to ensure compatible ordering. 1062 // void internalWriteEntries(java.io.ObjectOutputStream s) { 1063 // HashMapNode!(K,V)[] tab; 1064 // if (size > 0 && (tab = table) !is null) { 1065 // for (int i = 0; i < tab.length; ++i) { 1066 // for (HashMapNode!(K,V) e = tab[i]; e !is null; e = e.next) { 1067 // s.writeObject(e.key); 1068 // s.writeObject(e.value); 1069 // } 1070 // } 1071 // } 1072 // } 1073 1074 } 1075 1076 /* ------------------------------------------------------------ */ 1077 // Tree bins 1078 1079 /** 1080 * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn 1081 * extends Node) so can be used as extension of either regular or 1082 * linked node. 1083 */ 1084 final class TreeNode(K, V) : LinkedHashMapEntry!(K, V) { 1085 1086 /** 1087 * The bin count threshold for untreeifying a (split) bin during a 1088 * resize operation. Should be less than TREEIFY_THRESHOLD, and at 1089 * most 6 to mesh with shrinkage detection under removal. 1090 */ 1091 enum int UNTREEIFY_THRESHOLD = 6; 1092 1093 TreeNode!(K, V) parent; // red-black tree links 1094 TreeNode!(K, V) left; 1095 TreeNode!(K, V) right; 1096 TreeNode!(K, V) prev; // needed to unlink next upon deletion 1097 bool red; 1098 1099 this(size_t hash, K key, V val, HashMapNode!(K, V) next) { 1100 super(hash, key, val, next); 1101 } 1102 1103 /** 1104 * Returns root of tree containing this node. 1105 */ 1106 final TreeNode!(K, V) root() { 1107 for (TreeNode!(K, V) r = this, p;;) { 1108 if ((p = r.parent) is null) 1109 return r; 1110 r = p; 1111 } 1112 } 1113 1114 /** 1115 * Ensures that the given root is the first node of its bin. 1116 */ 1117 static void moveRootToFront(K, V)(HashMapNode!(K, V)[] tab, TreeNode!(K, V) root) { 1118 size_t n; 1119 if (root !is null && tab !is null && (n = tab.length) > 0) { 1120 size_t index = (n - 1) & root.hash; 1121 TreeNode!(K, V) first = cast(TreeNode!(K, V))tab[index]; 1122 if (root != first) { 1123 HashMapNode!(K, V) rn; 1124 tab[index] = root; 1125 TreeNode!(K, V) rp = root.prev; 1126 if ((rn = root.next) !is null) 1127 (cast(TreeNode!(K, V))rn).prev = rp; 1128 if (rp !is null) 1129 rp.next = rn; 1130 if (first !is null) 1131 first.prev = root; 1132 root.next = first; 1133 root.prev = null; 1134 } 1135 assert(checkInvariants(root)); 1136 } 1137 } 1138 1139 /** 1140 * Finds the node starting at root p with the given hash and key. 1141 * The kc argument caches comparableClassFor(key) upon first use 1142 * comparing keys. 1143 */ 1144 final TreeNode!(K, V) find(size_t h, K k) { 1145 TreeNode!(K, V) p = this; 1146 do { 1147 size_t ph; int dir; K pk; 1148 TreeNode!(K, V) pl = p.left, pr = p.right, q; 1149 if ((ph = p.hash) > h) 1150 p = pl; 1151 else if (ph < h) 1152 p = pr; 1153 else { 1154 pk = p.key; 1155 if (pk == k) 1156 return p; 1157 else if (pl is null) 1158 p = pr; 1159 else if (pr is null) 1160 p = pl; 1161 else { 1162 // static if(isNumeric!(K)) { dir = std.math.cmp(cast(float)k, cast(float)pk); } 1163 // else { dir = std.algorithm.cmp(k, pk); } 1164 1165 // if (dir != 0) 1166 // p = (dir < 0) ? pl : pr; 1167 // else if ((q = pr.find(h, k)) !is null) 1168 // return q; 1169 // else 1170 // p = pl; 1171 if(k < pk) 1172 p = pl; 1173 else if( k>pk) 1174 p = pr; 1175 else if ((q = pr.find(h, k)) !is null) 1176 return q; 1177 else 1178 p = pl; 1179 } 1180 } 1181 } while (p !is null); 1182 return null; 1183 } 1184 1185 /** 1186 * Calls find for root node. 1187 */ 1188 final TreeNode!(K, V) getTreeNode(size_t h, K k) { 1189 return ((parent !is null) ? root() : this).find(h, k); 1190 } 1191 1192 /** 1193 * Tie-breaking utility for ordering insertions when equal 1194 * hashCodes and non-comparable. We don't require a total 1195 * order, just a consistent insertion rule to maintain 1196 * equivalence across rebalancings. Tie-breaking further than 1197 * necessary simplifies testing a bit. 1198 */ 1199 static int tieBreakOrder(T)(T a, T b) if(isBasicType!(T) || isSomeString!T || isByteArray!T) { 1200 return (hashOf(a) <= hashOf(b) ? -1 : 1); 1201 } 1202 1203 static int tieBreakOrder(T)(T a, T b) if(is(T == class) || is(T == interface)) { 1204 int d = 0; 1205 if (a is null || b is null || 1206 (d = std.algorithm.cmp(typeid(a).name, 1207 typeid(b).name)) == 0) 1208 d = ((cast(Object)a).toHash() <= (cast(Object)b).toHash() ? -1 : 1); 1209 return d; 1210 } 1211 1212 static int tieBreakOrder(T)(T a, T b) if(is(T == struct)) { 1213 int d = std.algorithm.cmp(typeid(a).name, 1214 typeid(b).name); 1215 if (d == 0) 1216 d = (a.toHash() <= b.toHash() ? -1 : 1); 1217 return d; 1218 } 1219 1220 /** 1221 * Forms tree of the nodes linked from this node. 1222 * @return root of tree 1223 */ 1224 final void treeify(HashMapNode!(K, V)[] tab) { 1225 TreeNode!(K, V) root = null; 1226 for (TreeNode!(K, V) x = this, next; x !is null; x = next) { 1227 next = cast(TreeNode!(K, V))x.next; 1228 x.left = x.right = null; 1229 if (root is null) { 1230 x.parent = null; 1231 x.red = false; 1232 root = x; 1233 } 1234 else { 1235 K k = x.key; 1236 size_t h = x.hash; 1237 for (TreeNode!(K, V) p = root;;) { 1238 size_t ph; 1239 int dir; 1240 K pk = p.key; 1241 if ((ph = p.hash) > h) 1242 dir = -1; 1243 else if (ph < h) 1244 dir = 1; 1245 else { 1246 // static if(isNumeric!(K)) { dir = std.math.cmp(cast(float)k, cast(float)pk); } 1247 // else { dir = std.algorithm.cmp(k, pk); } 1248 if (k == pk) 1249 dir = tieBreakOrder!(K)(k, pk); 1250 else if(k > pk) 1251 dir = 1; 1252 else 1253 dir = -1; 1254 } 1255 1256 TreeNode!(K, V) xp = p; 1257 if ((p = (dir <= 0) ? p.left : p.right) is null) { 1258 x.parent = xp; 1259 if (dir <= 0) 1260 xp.left = x; 1261 else 1262 xp.right = x; 1263 root = balanceInsertion(root, x); 1264 break; 1265 } 1266 } 1267 } 1268 } 1269 moveRootToFront(tab, root); 1270 } 1271 1272 /** 1273 * Returns a list of non-TreeNodes replacing those linked from 1274 * this node. 1275 */ 1276 final HashMapNode!(K, V) untreeify(HashMap!(K, V) map) { 1277 HashMapNode!(K, V) hd = null, tl = null; 1278 for (HashMapNode!(K, V) q = this; q !is null; q = q.next) { 1279 HashMapNode!(K, V) p = map.replacementNode(q, null); 1280 if (tl is null) 1281 hd = p; 1282 else 1283 tl.next = p; 1284 tl = p; 1285 } 1286 return hd; 1287 } 1288 1289 /** 1290 * Tree version of putVal. 1291 */ 1292 final TreeNode!(K, V) putTreeVal(HashMap!(K, V) map, HashMapNode!(K, V)[] tab, 1293 size_t h, K k, V v) { 1294 // Class<?> kc = null; 1295 bool searched = false; 1296 TreeNode!(K, V) root = (parent !is null) ? root() : this; 1297 for (TreeNode!(K, V) p = root;;) { 1298 size_t ph; K pk; int dir; 1299 1300 if ((ph = p.hash) > h) 1301 dir = -1; 1302 else if (ph < h) 1303 dir = 1; 1304 else { 1305 pk = p.key; 1306 if (pk == k) 1307 return p; 1308 else { 1309 // static if(isNumeric!(K)) { dir = std.math.cmp(cast(float)k, cast(float)pk); } 1310 // else { dir = std.algorithm.cmp(k, pk); } 1311 1312 if(k == pk) { 1313 if (!searched) { 1314 TreeNode!(K, V) q, ch; 1315 searched = true; 1316 if (((ch = p.left) !is null && 1317 (q = ch.find(h, k)) !is null) || 1318 ((ch = p.right) !is null && 1319 (q = ch.find(h, k)) !is null)) 1320 return q; 1321 } 1322 dir = tieBreakOrder!(K)(k, pk); 1323 } else if(k > pk) 1324 dir = 1; 1325 else 1326 dir = -1; 1327 } 1328 } 1329 1330 TreeNode!(K, V) xp = p; 1331 if ((p = (dir <= 0) ? p.left : p.right) is null) { 1332 HashMapNode!(K, V) xpn = xp.next; 1333 TreeNode!(K, V) x = map.newTreeNode(h, k, v, xpn); 1334 if (dir <= 0) 1335 xp.left = x; 1336 else 1337 xp.right = x; 1338 xp.next = x; 1339 x.parent = x.prev = xp; 1340 if (xpn !is null) 1341 (cast(TreeNode!(K, V))xpn).prev = x; 1342 moveRootToFront(tab, balanceInsertion(root, x)); 1343 return null; 1344 } 1345 } 1346 } 1347 1348 /** 1349 * Removes the given node, that must be present before this call. 1350 * This is messier than typical red-black deletion code because we 1351 * cannot swap the contents of an interior node with a leaf 1352 * successor that is pinned by "next" pointers that are accessible 1353 * independently during traversal. So instead we swap the tree 1354 * linkages. If the current tree appears to have too few nodes, 1355 * the bin is converted back to a plain bin. (The test triggers 1356 * somewhere between 2 and 6 nodes, depending on tree structure). 1357 */ 1358 final void removeTreeNode(HashMap!(K, V) map, HashMapNode!(K, V)[] tab, 1359 bool movable) { 1360 size_t n; 1361 if (tab is null || (n = tab.length) == 0) 1362 return; 1363 size_t index = (n - 1) & hash; 1364 TreeNode!(K, V) first = cast(TreeNode!(K, V))tab[index], root = first, rl; 1365 TreeNode!(K, V) succ = cast(TreeNode!(K, V))next, pred = prev; 1366 if (pred is null) 1367 tab[index] = first = succ; 1368 else 1369 pred.next = succ; 1370 if (succ !is null) 1371 succ.prev = pred; 1372 if (first is null) 1373 return; 1374 if (root.parent !is null) 1375 root = root.root(); 1376 if (root is null || root.right is null || 1377 (rl = root.left) is null || rl.left is null) { 1378 tab[index] = first.untreeify(map); // too small 1379 return; 1380 } 1381 TreeNode!(K, V) p = this, pl = left, pr = right, replacement; 1382 if (pl !is null && pr !is null) { 1383 TreeNode!(K, V) s = pr, sl; 1384 while ((sl = s.left) !is null) // find successor 1385 s = sl; 1386 bool c = s.red; s.red = p.red; p.red = c; // swap colors 1387 TreeNode!(K, V) sr = s.right; 1388 TreeNode!(K, V) pp = p.parent; 1389 if (s == pr) { // p was s's direct parent 1390 p.parent = s; 1391 s.right = p; 1392 } 1393 else { 1394 TreeNode!(K, V) sp = s.parent; 1395 if ((p.parent = sp) !is null) { 1396 if (s == sp.left) 1397 sp.left = p; 1398 else 1399 sp.right = p; 1400 } 1401 if ((s.right = pr) !is null) 1402 pr.parent = s; 1403 } 1404 p.left = null; 1405 if ((p.right = sr) !is null) 1406 sr.parent = p; 1407 if ((s.left = pl) !is null) 1408 pl.parent = s; 1409 if ((s.parent = pp) is null) 1410 root = s; 1411 else if (p == pp.left) 1412 pp.left = s; 1413 else 1414 pp.right = s; 1415 if (sr !is null) 1416 replacement = sr; 1417 else 1418 replacement = p; 1419 } 1420 else if (pl !is null) 1421 replacement = pl; 1422 else if (pr !is null) 1423 replacement = pr; 1424 else 1425 replacement = p; 1426 if (replacement != p) { 1427 TreeNode!(K, V) pp = replacement.parent = p.parent; 1428 if (pp is null) 1429 root = replacement; 1430 else if (p == pp.left) 1431 pp.left = replacement; 1432 else 1433 pp.right = replacement; 1434 p.left = p.right = p.parent = null; 1435 } 1436 1437 TreeNode!(K, V) r = p.red ? root : balanceDeletion(root, replacement); 1438 1439 if (replacement == p) { // detach 1440 TreeNode!(K, V) pp = p.parent; 1441 p.parent = null; 1442 if (pp !is null) { 1443 if (p == pp.left) 1444 pp.left = null; 1445 else if (p == pp.right) 1446 pp.right = null; 1447 } 1448 } 1449 if (movable) 1450 moveRootToFront(tab, r); 1451 } 1452 1453 /** 1454 * Splits nodes in a tree bin into lower and upper tree bins, 1455 * or untreeifies if now too small. Called only from resize; 1456 * see above discussion about split bits and indices. 1457 * 1458 * @param map the map 1459 * @param tab the table for recording bin heads 1460 * @param index the index of the table being split 1461 * @param bit the bit of hash to split on 1462 */ 1463 final void split(HashMap!(K, V) map, HashMapNode!(K, V)[] tab, int index, int bit) { 1464 TreeNode!(K, V) b = this; 1465 // Relink into lo and hi lists, preserving order 1466 TreeNode!(K, V) loHead = null, loTail = null; 1467 TreeNode!(K, V) hiHead = null, hiTail = null; 1468 int lc = 0, hc = 0; 1469 for (TreeNode!(K, V) e = b, next; e !is null; e = next) { 1470 next = cast(TreeNode!(K, V))e.next; 1471 e.next = null; 1472 if ((e.hash & bit) == 0) { 1473 if ((e.prev = loTail) is null) 1474 loHead = e; 1475 else 1476 loTail.next = e; 1477 loTail = e; 1478 ++lc; 1479 } 1480 else { 1481 if ((e.prev = hiTail) is null) 1482 hiHead = e; 1483 else 1484 hiTail.next = e; 1485 hiTail = e; 1486 ++hc; 1487 } 1488 } 1489 1490 if (loHead !is null) { 1491 if (lc <= UNTREEIFY_THRESHOLD) 1492 tab[index] = loHead.untreeify(map); 1493 else { 1494 tab[index] = loHead; 1495 if (hiHead !is null) // (else is already treeified) 1496 loHead.treeify(tab); 1497 } 1498 } 1499 if (hiHead !is null) { 1500 if (hc <= UNTREEIFY_THRESHOLD) 1501 tab[index + bit] = hiHead.untreeify(map); 1502 else { 1503 tab[index + bit] = hiHead; 1504 if (loHead !is null) 1505 hiHead.treeify(tab); 1506 } 1507 } 1508 } 1509 1510 /* ------------------------------------------------------------ */ 1511 // Red-black tree methods, all adapted from CLR 1512 1513 static TreeNode!(K, V) rotateLeft(K, V)(TreeNode!(K, V) root, 1514 TreeNode!(K, V) p) { 1515 TreeNode!(K, V) r, pp, rl; 1516 if (p !is null && (r = p.right) !is null) { 1517 if ((rl = p.right = r.left) !is null) 1518 rl.parent = p; 1519 if ((pp = r.parent = p.parent) is null) 1520 (root = r).red = false; 1521 else if (pp.left == p) 1522 pp.left = r; 1523 else 1524 pp.right = r; 1525 r.left = p; 1526 p.parent = r; 1527 } 1528 return root; 1529 } 1530 1531 static TreeNode!(K, V) rotateRight(K, V)(TreeNode!(K, V) root, 1532 TreeNode!(K, V) p) { 1533 TreeNode!(K, V) l, pp, lr; 1534 if (p !is null && (l = p.left) !is null) { 1535 if ((lr = p.left = l.right) !is null) 1536 lr.parent = p; 1537 if ((pp = l.parent = p.parent) is null) 1538 (root = l).red = false; 1539 else if (pp.right == p) 1540 pp.right = l; 1541 else 1542 pp.left = l; 1543 l.right = p; 1544 p.parent = l; 1545 } 1546 return root; 1547 } 1548 1549 static TreeNode!(K, V) balanceInsertion(K, V)(TreeNode!(K, V) root, 1550 TreeNode!(K, V) x) { 1551 x.red = true; 1552 for (TreeNode!(K, V) xp, xpp, xppl, xppr;;) { 1553 if ((xp = x.parent) is null) { 1554 x.red = false; 1555 return x; 1556 } 1557 else if (!xp.red || (xpp = xp.parent) is null) 1558 return root; 1559 if (xp == (xppl = xpp.left)) { 1560 if ((xppr = xpp.right) !is null && xppr.red) { 1561 xppr.red = false; 1562 xp.red = false; 1563 xpp.red = true; 1564 x = xpp; 1565 } 1566 else { 1567 if (x == xp.right) { 1568 root = rotateLeft(root, x = xp); 1569 xpp = (xp = x.parent) is null ? null : xp.parent; 1570 } 1571 if (xp !is null) { 1572 xp.red = false; 1573 if (xpp !is null) { 1574 xpp.red = true; 1575 root = rotateRight(root, xpp); 1576 } 1577 } 1578 } 1579 } 1580 else { 1581 if (xppl !is null && xppl.red) { 1582 xppl.red = false; 1583 xp.red = false; 1584 xpp.red = true; 1585 x = xpp; 1586 } 1587 else { 1588 if (x == xp.left) { 1589 root = rotateRight(root, x = xp); 1590 xpp = (xp = x.parent) is null ? null : xp.parent; 1591 } 1592 if (xp !is null) { 1593 xp.red = false; 1594 if (xpp !is null) { 1595 xpp.red = true; 1596 root = rotateLeft(root, xpp); 1597 } 1598 } 1599 } 1600 } 1601 } 1602 } 1603 1604 static TreeNode!(K, V) balanceDeletion(K, V)(TreeNode!(K, V) root, 1605 TreeNode!(K, V) x) { 1606 for (TreeNode!(K, V) xp, xpl, xpr;;) { 1607 if (x is null || x == root) 1608 return root; 1609 else if ((xp = x.parent) is null) { 1610 x.red = false; 1611 return x; 1612 } 1613 else if (x.red) { 1614 x.red = false; 1615 return root; 1616 } 1617 else if ((xpl = xp.left) == x) { 1618 if ((xpr = xp.right) !is null && xpr.red) { 1619 xpr.red = false; 1620 xp.red = true; 1621 root = rotateLeft(root, xp); 1622 xpr = (xp = x.parent) is null ? null : xp.right; 1623 } 1624 if (xpr is null) 1625 x = xp; 1626 else { 1627 TreeNode!(K, V) sl = xpr.left, sr = xpr.right; 1628 if ((sr is null || !sr.red) && 1629 (sl is null || !sl.red)) { 1630 xpr.red = true; 1631 x = xp; 1632 } 1633 else { 1634 if (sr is null || !sr.red) { 1635 if (sl !is null) 1636 sl.red = false; 1637 xpr.red = true; 1638 root = rotateRight(root, xpr); 1639 xpr = (xp = x.parent) is null ? 1640 null : xp.right; 1641 } 1642 if (xpr !is null) { 1643 xpr.red = (xp is null) ? false : xp.red; 1644 if ((sr = xpr.right) !is null) 1645 sr.red = false; 1646 } 1647 if (xp !is null) { 1648 xp.red = false; 1649 root = rotateLeft(root, xp); 1650 } 1651 x = root; 1652 } 1653 } 1654 } 1655 else { // symmetric 1656 if (xpl !is null && xpl.red) { 1657 xpl.red = false; 1658 xp.red = true; 1659 root = rotateRight(root, xp); 1660 xpl = (xp = x.parent) is null ? null : xp.left; 1661 } 1662 if (xpl is null) 1663 x = xp; 1664 else { 1665 TreeNode!(K, V) sl = xpl.left, sr = xpl.right; 1666 if ((sl is null || !sl.red) && 1667 (sr is null || !sr.red)) { 1668 xpl.red = true; 1669 x = xp; 1670 } 1671 else { 1672 if (sl is null || !sl.red) { 1673 if (sr !is null) 1674 sr.red = false; 1675 xpl.red = true; 1676 root = rotateLeft(root, xpl); 1677 xpl = (xp = x.parent) is null ? 1678 null : xp.left; 1679 } 1680 if (xpl !is null) { 1681 xpl.red = (xp is null) ? false : xp.red; 1682 if ((sl = xpl.left) !is null) 1683 sl.red = false; 1684 } 1685 if (xp !is null) { 1686 xp.red = false; 1687 root = rotateRight(root, xp); 1688 } 1689 x = root; 1690 } 1691 } 1692 } 1693 } 1694 } 1695 1696 /** 1697 * Recursive invariant check 1698 */ 1699 static bool checkInvariants(K, V)(TreeNode!(K, V) t) { 1700 TreeNode!(K, V) tp = t.parent, tl = t.left, tr = t.right, 1701 tb = t.prev, tn = cast(TreeNode!(K, V))t.next; 1702 if (tb !is null && tb.next != t) 1703 return false; 1704 if (tn !is null && tn.prev != t) 1705 return false; 1706 if (tp !is null && t != tp.left && t != tp.right) 1707 return false; 1708 if (tl !is null && (tl.parent != t || tl.hash > t.hash)) 1709 return false; 1710 if (tr !is null && (tr.parent != t || tr.hash < t.hash)) 1711 return false; 1712 if (t.red && tl !is null && tl.red && tr !is null && tr.red) 1713 return false; 1714 if (tl !is null && !checkInvariants(tl)) 1715 return false; 1716 if (tr !is null && !checkInvariants(tr)) 1717 return false; 1718 return true; 1719 } 1720 } 1721 1722 1723 /** 1724 * Basic hash bin node, used for most entries. (See below for 1725 * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) 1726 */ 1727 class HashMapNode(K, V) : AbstractMapEntry!(K,V) { 1728 package size_t hash; 1729 package HashMapNode!(K, V) next; 1730 1731 this(size_t hash, K key, V value, HashMapNode!(K, V) next) { 1732 super(key, value); 1733 this.hash = hash; 1734 this.next = next; 1735 } 1736 } 1737 1738 1739 /** 1740 * HashMap.Node subclass for normal LinkedHashMap entries. 1741 */ 1742 class LinkedHashMapEntry(K, V) : HashMapNode!(K, V) { 1743 LinkedHashMapEntry!(K, V) before, after; 1744 1745 this(size_t hash, K key, V value, HashMapNode!(K, V) next) { 1746 super(hash, key, value, next); 1747 } 1748 }