1 /*
2  * Hunt - A refined core library for D programming language.
3  *
4  * Copyright (C) 2018-2019 HuntLabs
5  *
6  * Website: https://www.huntlabs.net/
7  *
8  * Licensed under the Apache-2.0 License.
9  *
10  */
11 
12 module hunt.math.Helper;
13 
14 import std.math;
15 import hunt.Integer;
16 import hunt.Long;
17 import hunt.Exceptions;
18 
19 /**
20 */
21 final class MathHelper {
22 
23     /**
24      * Don't let anyone instantiate this class.
25      */
26     private this() {}
27 
28     /**
29      * The {@code double} value that is closer than any other to
30      * <i>e</i>, the base of the natural logarithms.
31      */
32     enum double E = 2.7182818284590452354;
33 
34     /**
35      * The {@code double} value that is closer than any other to
36      * <i>pi</i>, the ratio of the circumference of a circle to its
37      * diameter.
38      */
39     enum double PI = 3.14159265358979323846;
40 
41     /**
42      * Constant by which to multiply an angular value in degrees to obtain an
43      * angular value in radians.
44      */
45     private enum double DEGREES_TO_RADIANS = 0.017453292519943295;
46 
47     /**
48      * Constant by which to multiply an angular value in radians to obtain an
49      * angular value in degrees.
50      */
51     private enum double RADIANS_TO_DEGREES = 57.29577951308232;
52 
53     /**
54      * Returns the trigonometric sine of an angle.  Special cases:
55      * <ul><li>If the argument is NaN or an infinity, then the
56      * result is NaN.
57      * <li>If the argument is zero, then the result is a zero with the
58      * same sign as the argument.</ul>
59      *
60      * <p>The computed result must be within 1 ulp of the exact result.
61      * Results must be semi-monotonic.
62      *
63      * @param   a   an angle, in radians.
64      * @return  the sine of the argument.
65      */
66     // @HotSpotIntrinsicCandidate
67     // static double sin(double a) {
68     //     return StrictMath.sin(a); // default impl. delegates to StrictMath
69     // }
70 
71     // /**
72     //  * Returns the trigonometric cosine of an angle. Special cases:
73     //  * <ul><li>If the argument is NaN or an infinity, then the
74     //  * result is NaN.</ul>
75     //  *
76     //  * <p>The computed result must be within 1 ulp of the exact result.
77     //  * Results must be semi-monotonic.
78     //  *
79     //  * @param   a   an angle, in radians.
80     //  * @return  the cosine of the argument.
81     //  */
82     // @HotSpotIntrinsicCandidate
83     // static double cos(double a) {
84     //     return StrictMath.cos(a); // default impl. delegates to StrictMath
85     // }
86 
87     // /**
88     //  * Returns the trigonometric tangent of an angle.  Special cases:
89     //  * <ul><li>If the argument is NaN or an infinity, then the result
90     //  * is NaN.
91     //  * <li>If the argument is zero, then the result is a zero with the
92     //  * same sign as the argument.</ul>
93     //  *
94     //  * <p>The computed result must be within 1 ulp of the exact result.
95     //  * Results must be semi-monotonic.
96     //  *
97     //  * @param   a   an angle, in radians.
98     //  * @return  the tangent of the argument.
99     //  */
100     // @HotSpotIntrinsicCandidate
101     // static double tan(double a) {
102     //     return StrictMath.tan(a); // default impl. delegates to StrictMath
103     // }
104 
105     // /**
106     //  * Returns the arc sine of a value; the returned angle is in the
107     //  * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
108     //  * <ul><li>If the argument is NaN or its absolute value is greater
109     //  * than 1, then the result is NaN.
110     //  * <li>If the argument is zero, then the result is a zero with the
111     //  * same sign as the argument.</ul>
112     //  *
113     //  * <p>The computed result must be within 1 ulp of the exact result.
114     //  * Results must be semi-monotonic.
115     //  *
116     //  * @param   a   the value whose arc sine is to be returned.
117     //  * @return  the arc sine of the argument.
118     //  */
119     // static double asin(double a) {
120     //     return StrictMath.asin(a); // default impl. delegates to StrictMath
121     // }
122 
123     // /**
124     //  * Returns the arc cosine of a value; the returned angle is in the
125     //  * range 0.0 through <i>pi</i>.  Special case:
126     //  * <ul><li>If the argument is NaN or its absolute value is greater
127     //  * than 1, then the result is NaN.</ul>
128     //  *
129     //  * <p>The computed result must be within 1 ulp of the exact result.
130     //  * Results must be semi-monotonic.
131     //  *
132     //  * @param   a   the value whose arc cosine is to be returned.
133     //  * @return  the arc cosine of the argument.
134     //  */
135     // static double acos(double a) {
136     //     return StrictMath.acos(a); // default impl. delegates to StrictMath
137     // }
138 
139     // /**
140     //  * Returns the arc tangent of a value; the returned angle is in the
141     //  * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
142     //  * <ul><li>If the argument is NaN, then the result is NaN.
143     //  * <li>If the argument is zero, then the result is a zero with the
144     //  * same sign as the argument.</ul>
145     //  *
146     //  * <p>The computed result must be within 1 ulp of the exact result.
147     //  * Results must be semi-monotonic.
148     //  *
149     //  * @param   a   the value whose arc tangent is to be returned.
150     //  * @return  the arc tangent of the argument.
151     //  */
152     // static double atan(double a) {
153     //     return StrictMath.atan(a); // default impl. delegates to StrictMath
154     // }
155 
156     // /**
157     //  * Converts an angle measured in degrees to an approximately
158     //  * equivalent angle measured in radians.  The conversion from
159     //  * degrees to radians is generally inexact.
160     //  *
161     //  * @param   angdeg   an angle, in degrees
162     //  * @return  the measurement of the angle {@code angdeg}
163     //  *          in radians.
164     //  */
165     // static double toRadians(double angdeg) {
166     //     return angdeg * DEGREES_TO_RADIANS;
167     // }
168 
169     // /**
170     //  * Converts an angle measured in radians to an approximately
171     //  * equivalent angle measured in degrees.  The conversion from
172     //  * radians to degrees is generally inexact; users should
173     //  * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
174     //  * equal {@code 0.0}.
175     //  *
176     //  * @param   angrad   an angle, in radians
177     //  * @return  the measurement of the angle {@code angrad}
178     //  *          in degrees.
179     //  */
180     // static double toDegrees(double angrad) {
181     //     return angrad * RADIANS_TO_DEGREES;
182     // }
183 
184     /**
185      * Returns Euler's number <i>e</i> raised to the power of a
186      * {@code double} value.  Special cases:
187      * <ul><li>If the argument is NaN, the result is NaN.
188      * <li>If the argument is positive infinity, then the result is
189      * positive infinity.
190      * <li>If the argument is negative infinity, then the result is
191      * positive zero.</ul>
192      *
193      * <p>The computed result must be within 1 ulp of the exact result.
194      * Results must be semi-monotonic.
195      *
196      * @param   a   the exponent to raise <i>e</i> to.
197      * @return  the value <i>e</i><sup>{@code a}</sup>,
198      *          where <i>e</i> is the base of the natural logarithms.
199      */
200     // @HotSpotIntrinsicCandidate
201     // static double exp(double a) {
202     //     return StrictMath.exp(a); // default impl. delegates to StrictMath
203     // }
204 
205     /**
206      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
207      * value.  Special cases:
208      * <ul><li>If the argument is NaN or less than zero, then the result
209      * is NaN.
210      * <li>If the argument is positive infinity, then the result is
211      * positive infinity.
212      * <li>If the argument is positive zero or negative zero, then the
213      * result is negative infinity.</ul>
214      *
215      * <p>The computed result must be within 1 ulp of the exact result.
216      * Results must be semi-monotonic.
217      *
218      * @param   a   a value
219      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
220      *          {@code a}.
221      */
222     // @HotSpotIntrinsicCandidate
223     // static double log(double a) {
224     //     return StrictMath.log(a); // default impl. delegates to StrictMath
225     // }
226 
227     /**
228      * Returns the base 10 logarithm of a {@code double} value.
229      * Special cases:
230      *
231      * <ul><li>If the argument is NaN or less than zero, then the result
232      * is NaN.
233      * <li>If the argument is positive infinity, then the result is
234      * positive infinity.
235      * <li>If the argument is positive zero or negative zero, then the
236      * result is negative infinity.
237      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
238      * integer <i>n</i>, then the result is <i>n</i>.
239      * </ul>
240      *
241      * <p>The computed result must be within 1 ulp of the exact result.
242      * Results must be semi-monotonic.
243      *
244      * @param   a   a value
245      * @return  the base 10 logarithm of  {@code a}.
246      */
247     // @HotSpotIntrinsicCandidate
248     // static double log10(double a) {
249     //     return StrictMath.log10(a); // default impl. delegates to StrictMath
250     // }
251 
252     /**
253      * Returns the correctly rounded positive square root of a
254      * {@code double} value.
255      * Special cases:
256      * <ul><li>If the argument is NaN or less than zero, then the result
257      * is NaN.
258      * <li>If the argument is positive infinity, then the result is positive
259      * infinity.
260      * <li>If the argument is positive zero or negative zero, then the
261      * result is the same as the argument.</ul>
262      * Otherwise, the result is the {@code double} value closest to
263      * the true mathematical square root of the argument value.
264      *
265      * @param   a   a value.
266      * @return  the positive square root of {@code a}.
267      *          If the argument is NaN or less than zero, the result is NaN.
268      */
269     // @HotSpotIntrinsicCandidate
270     // static double sqrt(double a) {
271     //     return StrictMath.sqrt(a); // default impl. delegates to StrictMath
272     //                                // Note that hardware sqrt instructions
273     //                                // frequently can be directly used by JITs
274     //                                // and should be much faster than doing
275     //                                // Math.sqrt in software.
276     // }
277 
278 
279     /**
280      * Returns the cube root of a {@code double} value.  For
281      * positive finite {@code x}, {@code cbrt(-x) ==
282      * -cbrt(x)}; that is, the cube root of a negative value is
283      * the negative of the cube root of that value's magnitude.
284      *
285      * Special cases:
286      *
287      * <ul>
288      *
289      * <li>If the argument is NaN, then the result is NaN.
290      *
291      * <li>If the argument is infinite, then the result is an infinity
292      * with the same sign as the argument.
293      *
294      * <li>If the argument is zero, then the result is a zero with the
295      * same sign as the argument.
296      *
297      * </ul>
298      *
299      * <p>The computed result must be within 1 ulp of the exact result.
300      *
301      * @param   a   a value.
302      * @return  the cube root of {@code a}.
303      */
304     // static double cbrt(double a) {
305     //     return StrictMath.cbrt(a);
306     // }
307 
308     /**
309      * Computes the remainder operation on two arguments as prescribed
310      * by the IEEE 754 standard.
311      * The remainder value is mathematically equal to
312      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
313      * where <i>n</i> is the mathematical integer closest to the exact
314      * mathematical value of the quotient {@code f1/f2}, and if two
315      * mathematical integers are equally close to {@code f1/f2},
316      * then <i>n</i> is the integer that is even. If the remainder is
317      * zero, its sign is the same as the sign of the first argument.
318      * Special cases:
319      * <ul><li>If either argument is NaN, or the first argument is infinite,
320      * or the second argument is positive zero or negative zero, then the
321      * result is NaN.
322      * <li>If the first argument is finite and the second argument is
323      * infinite, then the result is the same as the first argument.</ul>
324      *
325      * @param   f1   the dividend.
326      * @param   f2   the divisor.
327      * @return  the remainder when {@code f1} is divided by
328      *          {@code f2}.
329      */
330     // static double IEEEremainder(double f1, double f2) {
331     //     return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
332     // }
333 
334     /**
335      * Returns the smallest (closest to negative infinity)
336      * {@code double} value that is greater than or equal to the
337      * argument and is equal to a mathematical integer. Special cases:
338      * <ul><li>If the argument value is already equal to a
339      * mathematical integer, then the result is the same as the
340      * argument.  <li>If the argument is NaN or an infinity or
341      * positive zero or negative zero, then the result is the same as
342      * the argument.  <li>If the argument value is less than zero but
343      * greater than -1.0, then the result is negative zero.</ul> Note
344      * that the value of {@code Math.ceil(x)} is exactly the
345      * value of {@code -Math.floor(-x)}.
346      *
347      *
348      * @param   a   a value.
349      * @return  the smallest (closest to negative infinity)
350      *          floating-point value that is greater than or equal to
351      *          the argument and is equal to a mathematical integer.
352      */
353     static double ceil(double a) {
354         return std.math.ceil(a);
355         // return StrictMath.ceil(a); // default impl. delegates to StrictMath
356     }
357 
358     /**
359      * Returns the largest (closest to positive infinity)
360      * {@code double} value that is less than or equal to the
361      * argument and is equal to a mathematical integer. Special cases:
362      * <ul><li>If the argument value is already equal to a
363      * mathematical integer, then the result is the same as the
364      * argument.  <li>If the argument is NaN or an infinity or
365      * positive zero or negative zero, then the result is the same as
366      * the argument.</ul>
367      *
368      * @param   a   a value.
369      * @return  the largest (closest to positive infinity)
370      *          floating-point value that less than or equal to the argument
371      *          and is equal to a mathematical integer.
372      */
373     static double floor(double a) {
374         return std.math.floor(a);
375         // return StrictMath.floor(a); // default impl. delegates to StrictMath
376     }
377 
378     /**
379      * Returns the {@code double} value that is closest in value
380      * to the argument and is equal to a mathematical integer. If two
381      * {@code double} values that are mathematical integers are
382      * equally close, the result is the integer value that is
383      * even. Special cases:
384      * <ul><li>If the argument value is already equal to a mathematical
385      * integer, then the result is the same as the argument.
386      * <li>If the argument is NaN or an infinity or positive zero or negative
387      * zero, then the result is the same as the argument.</ul>
388      *
389      * @param   a   a {@code double} value.
390      * @return  the closest floating-point value to {@code a} that is
391      *          equal to a mathematical integer.
392      */
393     // static double rint(double a) {
394     //     return StrictMath.rint(a); // default impl. delegates to StrictMath
395     // }
396 
397     // /**
398     //  * Returns the angle <i>theta</i> from the conversion of rectangular
399     //  * coordinates ({@code x},&nbsp;{@code y}) to polar
400     //  * coordinates (r,&nbsp;<i>theta</i>).
401     //  * This method computes the phase <i>theta</i> by computing an arc tangent
402     //  * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
403     //  * cases:
404     //  * <ul><li>If either argument is NaN, then the result is NaN.
405     //  * <li>If the first argument is positive zero and the second argument
406     //  * is positive, or the first argument is positive and finite and the
407     //  * second argument is positive infinity, then the result is positive
408     //  * zero.
409     //  * <li>If the first argument is negative zero and the second argument
410     //  * is positive, or the first argument is negative and finite and the
411     //  * second argument is positive infinity, then the result is negative zero.
412     //  * <li>If the first argument is positive zero and the second argument
413     //  * is negative, or the first argument is positive and finite and the
414     //  * second argument is negative infinity, then the result is the
415     //  * {@code double} value closest to <i>pi</i>.
416     //  * <li>If the first argument is negative zero and the second argument
417     //  * is negative, or the first argument is negative and finite and the
418     //  * second argument is negative infinity, then the result is the
419     //  * {@code double} value closest to -<i>pi</i>.
420     //  * <li>If the first argument is positive and the second argument is
421     //  * positive zero or negative zero, or the first argument is positive
422     //  * infinity and the second argument is finite, then the result is the
423     //  * {@code double} value closest to <i>pi</i>/2.
424     //  * <li>If the first argument is negative and the second argument is
425     //  * positive zero or negative zero, or the first argument is negative
426     //  * infinity and the second argument is finite, then the result is the
427     //  * {@code double} value closest to -<i>pi</i>/2.
428     //  * <li>If both arguments are positive infinity, then the result is the
429     //  * {@code double} value closest to <i>pi</i>/4.
430     //  * <li>If the first argument is positive infinity and the second argument
431     //  * is negative infinity, then the result is the {@code double}
432     //  * value closest to 3*<i>pi</i>/4.
433     //  * <li>If the first argument is negative infinity and the second argument
434     //  * is positive infinity, then the result is the {@code double} value
435     //  * closest to -<i>pi</i>/4.
436     //  * <li>If both arguments are negative infinity, then the result is the
437     //  * {@code double} value closest to -3*<i>pi</i>/4.</ul>
438     //  *
439     //  * <p>The computed result must be within 2 ulps of the exact result.
440     //  * Results must be semi-monotonic.
441     //  *
442     //  * @param   y   the ordinate coordinate
443     //  * @param   x   the abscissa coordinate
444     //  * @return  the <i>theta</i> component of the point
445     //  *          (<i>r</i>,&nbsp;<i>theta</i>)
446     //  *          in polar coordinates that corresponds to the point
447     //  *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
448     //  */
449     // @HotSpotIntrinsicCandidate
450     // static double atan2(double y, double x) {
451     //     return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
452     // }
453 
454     // /**
455     //  * Returns the value of the first argument raised to the power of the
456     //  * second argument. Special cases:
457     //  *
458     //  * <ul><li>If the second argument is positive or negative zero, then the
459     //  * result is 1.0.
460     //  * <li>If the second argument is 1.0, then the result is the same as the
461     //  * first argument.
462     //  * <li>If the second argument is NaN, then the result is NaN.
463     //  * <li>If the first argument is NaN and the second argument is nonzero,
464     //  * then the result is NaN.
465     //  *
466     //  * <li>If
467     //  * <ul>
468     //  * <li>the absolute value of the first argument is greater than 1
469     //  * and the second argument is positive infinity, or
470     //  * <li>the absolute value of the first argument is less than 1 and
471     //  * the second argument is negative infinity,
472     //  * </ul>
473     //  * then the result is positive infinity.
474     //  *
475     //  * <li>If
476     //  * <ul>
477     //  * <li>the absolute value of the first argument is greater than 1 and
478     //  * the second argument is negative infinity, or
479     //  * <li>the absolute value of the
480     //  * first argument is less than 1 and the second argument is positive
481     //  * infinity,
482     //  * </ul>
483     //  * then the result is positive zero.
484     //  *
485     //  * <li>If the absolute value of the first argument equals 1 and the
486     //  * second argument is infinite, then the result is NaN.
487     //  *
488     //  * <li>If
489     //  * <ul>
490     //  * <li>the first argument is positive zero and the second argument
491     //  * is greater than zero, or
492     //  * <li>the first argument is positive infinity and the second
493     //  * argument is less than zero,
494     //  * </ul>
495     //  * then the result is positive zero.
496     //  *
497     //  * <li>If
498     //  * <ul>
499     //  * <li>the first argument is positive zero and the second argument
500     //  * is less than zero, or
501     //  * <li>the first argument is positive infinity and the second
502     //  * argument is greater than zero,
503     //  * </ul>
504     //  * then the result is positive infinity.
505     //  *
506     //  * <li>If
507     //  * <ul>
508     //  * <li>the first argument is negative zero and the second argument
509     //  * is greater than zero but not a finite odd integer, or
510     //  * <li>the first argument is negative infinity and the second
511     //  * argument is less than zero but not a finite odd integer,
512     //  * </ul>
513     //  * then the result is positive zero.
514     //  *
515     //  * <li>If
516     //  * <ul>
517     //  * <li>the first argument is negative zero and the second argument
518     //  * is a positive finite odd integer, or
519     //  * <li>the first argument is negative infinity and the second
520     //  * argument is a negative finite odd integer,
521     //  * </ul>
522     //  * then the result is negative zero.
523     //  *
524     //  * <li>If
525     //  * <ul>
526     //  * <li>the first argument is negative zero and the second argument
527     //  * is less than zero but not a finite odd integer, or
528     //  * <li>the first argument is negative infinity and the second
529     //  * argument is greater than zero but not a finite odd integer,
530     //  * </ul>
531     //  * then the result is positive infinity.
532     //  *
533     //  * <li>If
534     //  * <ul>
535     //  * <li>the first argument is negative zero and the second argument
536     //  * is a negative finite odd integer, or
537     //  * <li>the first argument is negative infinity and the second
538     //  * argument is a positive finite odd integer,
539     //  * </ul>
540     //  * then the result is negative infinity.
541     //  *
542     //  * <li>If the first argument is finite and less than zero
543     //  * <ul>
544     //  * <li> if the second argument is a finite even integer, the
545     //  * result is equal to the result of raising the absolute value of
546     //  * the first argument to the power of the second argument
547     //  *
548     //  * <li>if the second argument is a finite odd integer, the result
549     //  * is equal to the negative of the result of raising the absolute
550     //  * value of the first argument to the power of the second
551     //  * argument
552     //  *
553     //  * <li>if the second argument is finite and not an integer, then
554     //  * the result is NaN.
555     //  * </ul>
556     //  *
557     //  * <li>If both arguments are integers, then the result is exactly equal
558     //  * to the mathematical result of raising the first argument to the power
559     //  * of the second argument if that result can in fact be represented
560     //  * exactly as a {@code double} value.</ul>
561     //  *
562     //  * <p>(In the foregoing descriptions, a floating-point value is
563     //  * considered to be an integer if and only if it is finite and a
564     //  * fixed point of the method {@link #ceil ceil} or,
565     //  * equivalently, a fixed point of the method {@link #floor
566     //  * floor}. A value is a fixed point of a one-argument
567     //  * method if and only if the result of applying the method to the
568     //  * value is equal to the value.)
569     //  *
570     //  * <p>The computed result must be within 1 ulp of the exact result.
571     //  * Results must be semi-monotonic.
572     //  *
573     //  * @param   a   the base.
574     //  * @param   b   the exponent.
575     //  * @return  the value {@code a}<sup>{@code b}</sup>.
576     //  */
577     // @HotSpotIntrinsicCandidate
578     // static double pow(double a, double b) {
579     //     return StrictMath.pow(a, b); // default impl. delegates to StrictMath
580     // }
581 
582     // /**
583     //  * Returns the closest {@code int} to the argument, with ties
584     //  * rounding to positive infinity.
585     //  *
586     //  * <p>
587     //  * Special cases:
588     //  * <ul><li>If the argument is NaN, the result is 0.
589     //  * <li>If the argument is negative infinity or any value less than or
590     //  * equal to the value of {@code Integer.MIN_VALUE}, the result is
591     //  * equal to the value of {@code Integer.MIN_VALUE}.
592     //  * <li>If the argument is positive infinity or any value greater than or
593     //  * equal to the value of {@code Integer.MAX_VALUE}, the result is
594     //  * equal to the value of {@code Integer.MAX_VALUE}.</ul>
595     //  *
596     //  * @param   a   a floating-point value to be rounded to an integer.
597     //  * @return  the value of the argument rounded to the nearest
598     //  *          {@code int} value.
599     //  * @see     java.lang.Integer#MAX_VALUE
600     //  * @see     java.lang.Integer#MIN_VALUE
601     //  */
602     // static int round(float a) {
603     //     int intBits = Float.floatToRawIntBits(a);
604     //     int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
605     //             >> (FloatConsts.SIGNIFICAND_WIDTH - 1);
606     //     int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
607     //             + FloatConsts.EXP_BIAS) - biasedExp;
608     //     if ((shift & -32) == 0) { // shift >= 0 && shift < 32
609     //         // a is a finite number such that pow(2,-32) <= ulp(a) < 1
610     //         int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
611     //                 | (FloatConsts.SIGNIF_BIT_MASK + 1));
612     //         if (intBits < 0) {
613     //             r = -r;
614     //         }
615     //         // In the comments below each Java expression evaluates to the value
616     //         // the corresponding mathematical expression:
617     //         // (r) evaluates to a / ulp(a)
618     //         // (r >> shift) evaluates to floor(a * 2)
619     //         // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
620     //         // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
621     //         return ((r >> shift) + 1) >> 1;
622     //     } else {
623     //         // a is either
624     //         // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
625     //         // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
626     //         // - an infinity or NaN
627     //         return (int) a;
628     //     }
629     // }
630 
631     // /**
632     //  * Returns the closest {@code long} to the argument, with ties
633     //  * rounding to positive infinity.
634     //  *
635     //  * <p>Special cases:
636     //  * <ul><li>If the argument is NaN, the result is 0.
637     //  * <li>If the argument is negative infinity or any value less than or
638     //  * equal to the value of {@code Long.MIN_VALUE}, the result is
639     //  * equal to the value of {@code Long.MIN_VALUE}.
640     //  * <li>If the argument is positive infinity or any value greater than or
641     //  * equal to the value of {@code Long.MAX_VALUE}, the result is
642     //  * equal to the value of {@code Long.MAX_VALUE}.</ul>
643     //  *
644     //  * @param   a   a floating-point value to be rounded to a
645     //  *          {@code long}.
646     //  * @return  the value of the argument rounded to the nearest
647     //  *          {@code long} value.
648     //  * @see     java.lang.Long#MAX_VALUE
649     //  * @see     java.lang.Long#MIN_VALUE
650     //  */
651     // static long round(double a) {
652     //     long longBits = Double.doubleToRawLongBits(a);
653     //     long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
654     //             >> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
655     //     long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
656     //             + DoubleConsts.EXP_BIAS) - biasedExp;
657     //     if ((shift & -64) == 0) { // shift >= 0 && shift < 64
658     //         // a is a finite number such that pow(2,-64) <= ulp(a) < 1
659     //         long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
660     //                 | (DoubleConsts.SIGNIF_BIT_MASK + 1));
661     //         if (longBits < 0) {
662     //             r = -r;
663     //         }
664     //         // In the comments below each Java expression evaluates to the value
665     //         // the corresponding mathematical expression:
666     //         // (r) evaluates to a / ulp(a)
667     //         // (r >> shift) evaluates to floor(a * 2)
668     //         // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
669     //         // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
670     //         return ((r >> shift) + 1) >> 1;
671     //     } else {
672     //         // a is either
673     //         // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
674     //         // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
675     //         // - an infinity or NaN
676     //         return (long) a;
677     //     }
678     // }
679 
680     // private static final class RandomNumberGeneratorHolder {
681     //     static final Random randomNumberGenerator = new Random();
682     // }
683 
684     /**
685      * Returns a {@code double} value with a positive sign, greater
686      * than or equal to {@code 0.0} and less than {@code 1.0}.
687      * Returned values are chosen pseudorandomly with (approximately)
688      * uniform distribution from that range.
689      *
690      * <p>When this method is first called, it creates a single new
691      * pseudorandom-number generator, exactly as if by the expression
692      *
693      * <blockquote>{@code new java.util.Random()}</blockquote>
694      *
695      * This new pseudorandom-number generator is used thereafter for
696      * all calls to this method and is used nowhere else.
697      *
698      * <p>This method is properly synchronized to allow correct use by
699      * more than one thread. However, if many threads need to generate
700      * pseudorandom numbers at a great rate, it may reduce contention
701      * for each thread to have its own pseudorandom-number generator.
702      *
703      * @apiNote
704      * As the largest {@code double} value less than {@code 1.0}
705      * is {@code Math.nextDown(1.0)}, a value {@code x} in the closed range
706      * {@code [x1,x2]} where {@code x1<=x2} may be defined by the statements
707      *
708      * <blockquote><pre>{@code
709      * double f = Math.random()/Math.nextDown(1.0);
710      * double x = x1*(1.0 - f) + x2*f;
711      * }</pre></blockquote>
712      *
713      * @return  a pseudorandom {@code double} greater than or equal
714      * to {@code 0.0} and less than {@code 1.0}.
715      * @see #nextDown(double)
716      * @see Random#nextDouble()
717      */
718     // static double random() {
719     //     return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
720     // }
721 
722     /**
723      * Returns the sum of its arguments,
724      * throwing an exception if the result overflows an {@code int}.
725      *
726      * @param x the first value
727      * @param y the second value
728      * @return the result
729      * @throws ArithmeticException if the result overflows an int
730      */
731     // @HotSpotIntrinsicCandidate
732     static int addExact(int x, int y) {
733         int r = x + y;
734         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
735         if (((x ^ r) & (y ^ r)) < 0) {
736             throw new ArithmeticException("integer overflow");
737         }
738         return r;
739     }
740 
741     /**
742      * Returns the sum of its arguments,
743      * throwing an exception if the result overflows a {@code long}.
744      *
745      * @param x the first value
746      * @param y the second value
747      * @return the result
748      * @throws ArithmeticException if the result overflows a long
749      */
750     // @HotSpotIntrinsicCandidate
751     static long addExact(long x, long y) {
752         long r = x + y;
753         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
754         if (((x ^ r) & (y ^ r)) < 0) {
755             throw new ArithmeticException("long overflow");
756         }
757         return r;
758     }
759 
760     /**
761      * Returns the difference of the arguments,
762      * throwing an exception if the result overflows an {@code int}.
763      *
764      * @param x the first value
765      * @param y the second value to subtract from the first
766      * @return the result
767      * @throws ArithmeticException if the result overflows an int
768      */
769     // @HotSpotIntrinsicCandidate
770     static int subtractExact(int x, int y) {
771         int r = x - y;
772         // HD 2-12 Overflow iff the arguments have different signs and
773         // the sign of the result is different from the sign of x
774         if (((x ^ y) & (x ^ r)) < 0) {
775             throw new ArithmeticException("integer overflow");
776         }
777         return r;
778     }
779 
780     /**
781      * Returns the difference of the arguments,
782      * throwing an exception if the result overflows a {@code long}.
783      *
784      * @param x the first value
785      * @param y the second value to subtract from the first
786      * @return the result
787      * @throws ArithmeticException if the result overflows a long
788      */
789     // @HotSpotIntrinsicCandidate
790     static long subtractExact(long x, long y) {
791         long r = x - y;
792         // HD 2-12 Overflow iff the arguments have different signs and
793         // the sign of the result is different from the sign of x
794         if (((x ^ y) & (x ^ r)) < 0) {
795             throw new ArithmeticException("long overflow");
796         }
797         return r;
798     }
799 
800     /**
801      * Returns the product of the arguments,
802      * throwing an exception if the result overflows an {@code int}.
803      *
804      * @param x the first value
805      * @param y the second value
806      * @return the result
807      * @throws ArithmeticException if the result overflows an int
808      */
809     // @HotSpotIntrinsicCandidate
810     static int multiplyExact(int x, int y) {
811         long r = cast(long)x * cast(long)y;
812         if (cast(int)r != r) {
813             throw new ArithmeticException("integer overflow");
814         }
815         return cast(int)r;
816     }
817 
818     /**
819      * Returns the product of the arguments, throwing an exception if the result
820      * overflows a {@code long}.
821      *
822      * @param x the first value
823      * @param y the second value
824      * @return the result
825      * @throws ArithmeticException if the result overflows a long
826      */
827     static long multiplyExact(long x, int y) {
828         return multiplyExact(x, cast(long)y);
829     }
830 
831     /**
832      * Returns the product of the arguments,
833      * throwing an exception if the result overflows a {@code long}.
834      *
835      * @param x the first value
836      * @param y the second value
837      * @return the result
838      * @throws ArithmeticException if the result overflows a long
839      */
840     // @HotSpotIntrinsicCandidate
841     static long multiplyExact(long x, long y) {
842         long r = x * y;
843         long ax = abs(x);
844         long ay = abs(y);
845         if (((ax | ay) >>> 31 != 0)) {
846             // Some bits greater than 2^31 that might cause overflow
847             // Check the result using the divide operator
848             // and check for the special case of Long.MIN_VALUE * -1
849            if (((y != 0) && (r / y != x)) ||
850                (x == Long.MIN_VALUE && y == -1)) {
851                 throw new ArithmeticException("long overflow");
852             }
853         }
854         return r;
855     }
856 
857     /**
858      * Returns the argument incremented by one, throwing an exception if the
859      * result overflows an {@code int}.
860      *
861      * @param a the value to increment
862      * @return the result
863      * @throws ArithmeticException if the result overflows an int
864      */
865     // @HotSpotIntrinsicCandidate
866     static int incrementExact(int a) {
867         if (a == Integer.MAX_VALUE) {
868             throw new ArithmeticException("integer overflow");
869         }
870 
871         return a + 1;
872     }
873 
874     /**
875      * Returns the argument incremented by one, throwing an exception if the
876      * result overflows a {@code long}.
877      *
878      * @param a the value to increment
879      * @return the result
880      * @throws ArithmeticException if the result overflows a long
881      */
882     // @HotSpotIntrinsicCandidate
883     static long incrementExact(long a) {
884         if (a == Long.MAX_VALUE) {
885             throw new ArithmeticException("long overflow");
886         }
887 
888         return a + 1L;
889     }
890 
891     /**
892      * Returns the argument decremented by one, throwing an exception if the
893      * result overflows an {@code int}.
894      *
895      * @param a the value to decrement
896      * @return the result
897      * @throws ArithmeticException if the result overflows an int
898      */
899     // @HotSpotIntrinsicCandidate
900     static int decrementExact(int a) {
901         if (a == Integer.MIN_VALUE) {
902             throw new ArithmeticException("integer overflow");
903         }
904 
905         return a - 1;
906     }
907 
908     /**
909      * Returns the argument decremented by one, throwing an exception if the
910      * result overflows a {@code long}.
911      *
912      * @param a the value to decrement
913      * @return the result
914      * @throws ArithmeticException if the result overflows a long
915      */
916     // @HotSpotIntrinsicCandidate
917     static long decrementExact(long a) {
918         if (a == Long.MIN_VALUE) {
919             throw new ArithmeticException("long overflow");
920         }
921 
922         return a - 1L;
923     }
924 
925     /**
926      * Returns the negation of the argument, throwing an exception if the
927      * result overflows an {@code int}.
928      *
929      * @param a the value to negate
930      * @return the result
931      * @throws ArithmeticException if the result overflows an int
932      */
933     // @HotSpotIntrinsicCandidate
934     static int negateExact(int a) {
935         if (a == Integer.MIN_VALUE) {
936             throw new ArithmeticException("integer overflow");
937         }
938 
939         return -a;
940     }
941 
942     /**
943      * Returns the negation of the argument, throwing an exception if the
944      * result overflows a {@code long}.
945      *
946      * @param a the value to negate
947      * @return the result
948      * @throws ArithmeticException if the result overflows a long
949      */
950     // @HotSpotIntrinsicCandidate
951     static long negateExact(long a) {
952         if (a == Long.MIN_VALUE) {
953             throw new ArithmeticException("long overflow");
954         }
955 
956         return -a;
957     }
958 
959     /**
960      * Returns the value of the {@code long} argument;
961      * throwing an exception if the value overflows an {@code int}.
962      *
963      * @param value the long value
964      * @return the argument as an int
965      * @throws ArithmeticException if the {@code argument} overflows an int
966      */
967     static int toIntExact(long value) {
968         if (cast(int)value != value) {
969             throw new ArithmeticException("integer overflow");
970         }
971         return cast(int)value;
972     }
973 
974     /**
975      * Returns the exact mathematical product of the arguments.
976      *
977      * @param x the first value
978      * @param y the second value
979      * @return the result
980      */
981     static long multiplyFull(int x, int y) {
982         return cast(long)x * cast(long)y;
983     }
984 
985     /**
986      * Returns as a {@code long} the most significant 64 bits of the 128-bit
987      * product of two 64-bit factors.
988      *
989      * @param x the first value
990      * @param y the second value
991      * @return the result
992      */
993     // @HotSpotIntrinsicCandidate
994     static long multiplyHigh(long x, long y) {
995         if (x < 0 || y < 0) {
996             // Use technique from section 8-2 of Henry S. Warren, Jr.,
997             // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174.
998             long x1 = x >> 32;
999             long x2 = x & 0xFFFFFFFFL;
1000             long y1 = y >> 32;
1001             long y2 = y & 0xFFFFFFFFL;
1002             long z2 = x2 * y2;
1003             long t = x1 * y2 + (z2 >>> 32);
1004             long z1 = t & 0xFFFFFFFFL;
1005             long z0 = t >> 32;
1006             z1 += x2 * y1;
1007             return x1 * y1 + z0 + (z1 >> 32);
1008         } else {
1009             // Use Karatsuba technique with two base 2^32 digits.
1010             long x1 = x >>> 32;
1011             long y1 = y >>> 32;
1012             long x2 = x & 0xFFFFFFFFL;
1013             long y2 = y & 0xFFFFFFFFL;
1014             long A = x1 * y1;
1015             long B = x2 * y2;
1016             long C = (x1 + x2) * (y1 + y2);
1017             long K = C - A - B;
1018             return (((B >>> 32) + K) >>> 32) + A;
1019         }
1020     }
1021 
1022     /**
1023      * Returns the largest (closest to positive infinity)
1024      * {@code int} value that is less than or equal to the algebraic quotient.
1025      * There is one special case, if the dividend is the
1026      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1027      * then integer overflow occurs and
1028      * the result is equal to {@code Integer.MIN_VALUE}.
1029      * <p>
1030      * Normal integer division operates under the round to zero rounding mode
1031      * (truncation).  This operation instead acts under the round toward
1032      * negative infinity (floor) rounding mode.
1033      * The floor rounding mode gives different results from truncation
1034      * when the exact result is negative.
1035      * <ul>
1036      *   <li>If the signs of the arguments are the same, the results of
1037      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
1038      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
1039      *   <li>If the signs of the arguments are different,  the quotient is negative and
1040      *       {@code floorDiv} returns the integer less than or equal to the quotient
1041      *       and the {@code /} operator returns the integer closest to zero.<br>
1042      *       For example, {@code floorDiv(-4, 3) == -2},
1043      *       whereas {@code (-4 / 3) == -1}.
1044      *   </li>
1045      * </ul>
1046      *
1047      * @param x the dividend
1048      * @param y the divisor
1049      * @return the largest (closest to positive infinity)
1050      * {@code int} value that is less than or equal to the algebraic quotient.
1051      * @throws ArithmeticException if the divisor {@code y} is zero
1052      * @see #floorMod(int, int)
1053      * @see #floor(double)
1054      */
1055     static int floorDiv(int x, int y) {
1056         int r = x / y;
1057         // if the signs are different and modulo not zero, round down
1058         if ((x ^ y) < 0 && (r * y != x)) {
1059             r--;
1060         }
1061         return r;
1062     }
1063 
1064     /**
1065      * Returns the largest (closest to positive infinity)
1066      * {@code long} value that is less than or equal to the algebraic quotient.
1067      * There is one special case, if the dividend is the
1068      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1069      * then integer overflow occurs and
1070      * the result is equal to {@code Long.MIN_VALUE}.
1071      * <p>
1072      * Normal integer division operates under the round to zero rounding mode
1073      * (truncation).  This operation instead acts under the round toward
1074      * negative infinity (floor) rounding mode.
1075      * The floor rounding mode gives different results from truncation
1076      * when the exact result is negative.
1077      * <p>
1078      * For examples, see {@link #floorDiv(int, int)}.
1079      *
1080      * @param x the dividend
1081      * @param y the divisor
1082      * @return the largest (closest to positive infinity)
1083      * {@code int} value that is less than or equal to the algebraic quotient.
1084      * @throws ArithmeticException if the divisor {@code y} is zero
1085      * @see #floorMod(long, int)
1086      * @see #floor(double)
1087      */
1088     static long floorDiv(long x, int y) {
1089         return floorDiv(x, cast(long)y);
1090     }
1091 
1092     /**
1093      * Returns the largest (closest to positive infinity)
1094      * {@code long} value that is less than or equal to the algebraic quotient.
1095      * There is one special case, if the dividend is the
1096      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1097      * then integer overflow occurs and
1098      * the result is equal to {@code Long.MIN_VALUE}.
1099      * <p>
1100      * Normal integer division operates under the round to zero rounding mode
1101      * (truncation).  This operation instead acts under the round toward
1102      * negative infinity (floor) rounding mode.
1103      * The floor rounding mode gives different results from truncation
1104      * when the exact result is negative.
1105      * <p>
1106      * For examples, see {@link #floorDiv(int, int)}.
1107      *
1108      * @param x the dividend
1109      * @param y the divisor
1110      * @return the largest (closest to positive infinity)
1111      * {@code long} value that is less than or equal to the algebraic quotient.
1112      * @throws ArithmeticException if the divisor {@code y} is zero
1113      * @see #floorMod(long, long)
1114      * @see #floor(double)
1115      */
1116     static long floorDiv(long x, long y) {
1117         long r = x / y;
1118         // if the signs are different and modulo not zero, round down
1119         if ((x ^ y) < 0 && (r * y != x)) {
1120             r--;
1121         }
1122         return r;
1123     }
1124 
1125     /**
1126      * Returns the floor modulus of the {@code int} arguments.
1127      * <p>
1128      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1129      * has the same sign as the divisor {@code y}, and
1130      * is in the range of {@code -abs(y) < r < +abs(y)}.
1131      *
1132      * <p>
1133      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1134      * <ul>
1135      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1136      * </ul>
1137      * <p>
1138      * The difference in values between {@code floorMod} and
1139      * the {@code %} operator is due to the difference between
1140      * {@code floorDiv} that returns the integer less than or equal to the quotient
1141      * and the {@code /} operator that returns the integer closest to zero.
1142      * <p>
1143      * Examples:
1144      * <ul>
1145      *   <li>If the signs of the arguments are the same, the results
1146      *       of {@code floorMod} and the {@code %} operator are the same.  <br>
1147      *       <ul>
1148      *       <li>{@code floorMod(4, 3) == 1}; &nbsp; and {@code (4 % 3) == 1}</li>
1149      *       </ul>
1150      *   <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
1151      *      <ul>
1152      *      <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1} </li>
1153      *      <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1} </li>
1154      *      <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1 } </li>
1155      *      </ul>
1156      *   </li>
1157      * </ul>
1158      * <p>
1159      * If the signs of arguments are unknown and a positive modulus
1160      * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
1161      *
1162      * @param x the dividend
1163      * @param y the divisor
1164      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1165      * @throws ArithmeticException if the divisor {@code y} is zero
1166      * @see #floorDiv(int, int)
1167      */
1168     static int floorMod(int x, int y) {
1169         return x - floorDiv(x, y) * y;
1170     }
1171 
1172     /**
1173      * Returns the floor modulus of the {@code long} and {@code int} arguments.
1174      * <p>
1175      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1176      * has the same sign as the divisor {@code y}, and
1177      * is in the range of {@code -abs(y) < r < +abs(y)}.
1178      *
1179      * <p>
1180      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1181      * <ul>
1182      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1183      * </ul>
1184      * <p>
1185      * For examples, see {@link #floorMod(int, int)}.
1186      *
1187      * @param x the dividend
1188      * @param y the divisor
1189      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1190      * @throws ArithmeticException if the divisor {@code y} is zero
1191      * @see #floorDiv(long, int)
1192      */
1193     static int floorMod(long x, int y) {
1194         // Result cannot overflow the range of int.
1195         return cast(int)(x - floorDiv(x, y) * y);
1196     }
1197 
1198     /**
1199      * Returns the floor modulus of the {@code long} arguments.
1200      * <p>
1201      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1202      * has the same sign as the divisor {@code y}, and
1203      * is in the range of {@code -abs(y) < r < +abs(y)}.
1204      *
1205      * <p>
1206      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1207      * <ul>
1208      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1209      * </ul>
1210      * <p>
1211      * For examples, see {@link #floorMod(int, int)}.
1212      *
1213      * @param x the dividend
1214      * @param y the divisor
1215      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1216      * @throws ArithmeticException if the divisor {@code y} is zero
1217      * @see #floorDiv(long, long)
1218      */
1219     static long floorMod(long x, long y) {
1220         return x - floorDiv(x, y) * y;
1221     }
1222 
1223     /**
1224      * Returns the absolute value of an {@code int} value.
1225      * If the argument is not negative, the argument is returned.
1226      * If the argument is negative, the negation of the argument is returned.
1227      *
1228      * <p>Note that if the argument is equal to the value of
1229      * {@link Integer#MIN_VALUE}, the most negative representable
1230      * {@code int} value, the result is that same value, which is
1231      * negative.
1232      *
1233      * @param   a   the argument whose absolute value is to be determined
1234      * @return  the absolute value of the argument.
1235      */
1236     static int abs(int a) {
1237         return (a < 0) ? -a : a;
1238     }
1239 
1240     /**
1241      * Returns the absolute value of a {@code long} value.
1242      * If the argument is not negative, the argument is returned.
1243      * If the argument is negative, the negation of the argument is returned.
1244      *
1245      * <p>Note that if the argument is equal to the value of
1246      * {@link Long#MIN_VALUE}, the most negative representable
1247      * {@code long} value, the result is that same value, which
1248      * is negative.
1249      *
1250      * @param   a   the argument whose absolute value is to be determined
1251      * @return  the absolute value of the argument.
1252      */
1253     static long abs(long a) {
1254         return (a < 0) ? -a : a;
1255     }
1256 
1257     /**
1258      * Returns the absolute value of a {@code float} value.
1259      * If the argument is not negative, the argument is returned.
1260      * If the argument is negative, the negation of the argument is returned.
1261      * Special cases:
1262      * <ul><li>If the argument is positive zero or negative zero, the
1263      * result is positive zero.
1264      * <li>If the argument is infinite, the result is positive infinity.
1265      * <li>If the argument is NaN, the result is NaN.</ul>
1266      *
1267      * @apiNote As implied by the above, one valid implementation of
1268      * this method is given by the expression below which computes a
1269      * {@code float} with the same exponent and significand as the
1270      * argument but with a guaranteed zero sign bit indicating a
1271      * positive value:<br>
1272      * {@code Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))}
1273      *
1274      * @param   a   the argument whose absolute value is to be determined
1275      * @return  the absolute value of the argument.
1276      */
1277     static float abs(float a) {
1278         return (a <= 0.0F) ? 0.0F - a : a;
1279     }
1280 
1281     /**
1282      * Returns the absolute value of a {@code double} value.
1283      * If the argument is not negative, the argument is returned.
1284      * If the argument is negative, the negation of the argument is returned.
1285      * Special cases:
1286      * <ul><li>If the argument is positive zero or negative zero, the result
1287      * is positive zero.
1288      * <li>If the argument is infinite, the result is positive infinity.
1289      * <li>If the argument is NaN, the result is NaN.</ul>
1290      *
1291      * @apiNote As implied by the above, one valid implementation of
1292      * this method is given by the expression below which computes a
1293      * {@code double} with the same exponent and significand as the
1294      * argument but with a guaranteed zero sign bit indicating a
1295      * positive value:<br>
1296      * {@code Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)}
1297      *
1298      * @param   a   the argument whose absolute value is to be determined
1299      * @return  the absolute value of the argument.
1300      */
1301     // @HotSpotIntrinsicCandidate
1302     static double abs(double a) {
1303         return std.math.abs(a);
1304     }
1305 
1306     /**
1307      * Returns the greater of two {@code int} values. That is, the
1308      * result is the argument closer to the value of
1309      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1310      * the result is that same value.
1311      *
1312      * @param   a   an argument.
1313      * @param   b   another argument.
1314      * @return  the larger of {@code a} and {@code b}.
1315      */
1316     // @HotSpotIntrinsicCandidate
1317     static int max(int a, int b) {
1318         return (a >= b) ? a : b;
1319     }
1320 
1321     /**
1322      * Returns the greater of two {@code long} values. That is, the
1323      * result is the argument closer to the value of
1324      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1325      * the result is that same value.
1326      *
1327      * @param   a   an argument.
1328      * @param   b   another argument.
1329      * @return  the larger of {@code a} and {@code b}.
1330      */
1331     static long max(long a, long b) {
1332         return (a >= b) ? a : b;
1333     }
1334 
1335     // // Use raw bit-wise conversions on guaranteed non-NaN arguments.
1336     // private static final long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
1337     // private static final long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
1338 
1339     /**
1340      * Returns the greater of two {@code float} values.  That is,
1341      * the result is the argument closer to positive infinity. If the
1342      * arguments have the same value, the result is that same
1343      * value. If either value is NaN, then the result is NaN.  Unlike
1344      * the numerical comparison operators, this method considers
1345      * negative zero to be strictly smaller than positive zero. If one
1346      * argument is positive zero and the other negative zero, the
1347      * result is positive zero.
1348      *
1349      * @param   a   an argument.
1350      * @param   b   another argument.
1351      * @return  the larger of {@code a} and {@code b}.
1352      */
1353     static float max(float a, float b) {
1354         // if (a != a)
1355         //     return a;   // a is NaN
1356         // if ((a == 0.0f) &&
1357         //     (b == 0.0f) &&
1358         //     (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
1359         //     // Raw conversion ok since NaN can't map to -0.0.
1360         //     return b;
1361         // }
1362         // return (a >= b) ? a : b;
1363         import std.algorithm.comparison : max;
1364         return max(a,b);
1365     }
1366 
1367     /**
1368      * Returns the greater of two {@code double} values.  That
1369      * is, the result is the argument closer to positive infinity. If
1370      * the arguments have the same value, the result is that same
1371      * value. If either value is NaN, then the result is NaN.  Unlike
1372      * the numerical comparison operators, this method considers
1373      * negative zero to be strictly smaller than positive zero. If one
1374      * argument is positive zero and the other negative zero, the
1375      * result is positive zero.
1376      *
1377      * @param   a   an argument.
1378      * @param   b   another argument.
1379      * @return  the larger of {@code a} and {@code b}.
1380      */
1381     static double max(double a, double b) {
1382         // if (a != a)
1383         //     return a;   // a is NaN
1384         // if ((a == 0.0d) &&
1385         //     (b == 0.0d) &&
1386         //     (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
1387         //     // Raw conversion ok since NaN can't map to -0.0.
1388         //     return b;
1389         // }
1390         // return (a >= b) ? a : b;
1391         import std.algorithm.comparison : max;
1392         return max(a,b);
1393     }
1394 
1395     /**
1396      * Returns the smaller of two {@code int} values. That is,
1397      * the result the argument closer to the value of
1398      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1399      * value, the result is that same value.
1400      *
1401      * @param   a   an argument.
1402      * @param   b   another argument.
1403      * @return  the smaller of {@code a} and {@code b}.
1404      */
1405     // @HotSpotIntrinsicCandidate
1406     static int min(int a, int b) {
1407         return (a <= b) ? a : b;
1408     }
1409 
1410     /**
1411      * Returns the smaller of two {@code long} values. That is,
1412      * the result is the argument closer to the value of
1413      * {@link Long#MIN_VALUE}. If the arguments have the same
1414      * value, the result is that same value.
1415      *
1416      * @param   a   an argument.
1417      * @param   b   another argument.
1418      * @return  the smaller of {@code a} and {@code b}.
1419      */
1420     static long min(long a, long b) {
1421         return (a <= b) ? a : b;
1422     }
1423 
1424     /**
1425      * Returns the smaller of two {@code float} values.  That is,
1426      * the result is the value closer to negative infinity. If the
1427      * arguments have the same value, the result is that same
1428      * value. If either value is NaN, then the result is NaN.  Unlike
1429      * the numerical comparison operators, this method considers
1430      * negative zero to be strictly smaller than positive zero.  If
1431      * one argument is positive zero and the other is negative zero,
1432      * the result is negative zero.
1433      *
1434      * @param   a   an argument.
1435      * @param   b   another argument.
1436      * @return  the smaller of {@code a} and {@code b}.
1437      */
1438     // static float min(float a, float b) {
1439     //     if (a != a)
1440     //         return a;   // a is NaN
1441     //     if ((a == 0.0f) &&
1442     //         (b == 0.0f) &&
1443     //         (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
1444     //         // Raw conversion ok since NaN can't map to -0.0.
1445     //         return b;
1446     //     }
1447     //     return (a <= b) ? a : b;
1448     // }
1449 
1450     // /**
1451     //  * Returns the smaller of two {@code double} values.  That
1452     //  * is, the result is the value closer to negative infinity. If the
1453     //  * arguments have the same value, the result is that same
1454     //  * value. If either value is NaN, then the result is NaN.  Unlike
1455     //  * the numerical comparison operators, this method considers
1456     //  * negative zero to be strictly smaller than positive zero. If one
1457     //  * argument is positive zero and the other is negative zero, the
1458     //  * result is negative zero.
1459     //  *
1460     //  * @param   a   an argument.
1461     //  * @param   b   another argument.
1462     //  * @return  the smaller of {@code a} and {@code b}.
1463     //  */
1464     // static double min(double a, double b) {
1465     //     if (a != a)
1466     //         return a;   // a is NaN
1467     //     if ((a == 0.0d) &&
1468     //         (b == 0.0d) &&
1469     //         (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
1470     //         // Raw conversion ok since NaN can't map to -0.0.
1471     //         return b;
1472     //     }
1473     //     return (a <= b) ? a : b;
1474     // }
1475 
1476     // /**
1477     //  * Returns the fused multiply add of the three arguments; that is,
1478     //  * returns the exact product of the first two arguments summed
1479     //  * with the third argument and then rounded once to the nearest
1480     //  * {@code double}.
1481     //  *
1482     //  * The rounding is done using the {@linkplain
1483     //  * java.math.RoundingMode#HALF_EVEN round to nearest even
1484     //  * rounding mode}.
1485     //  *
1486     //  * In contrast, if {@code a * b + c} is evaluated as a regular
1487     //  * floating-point expression, two rounding errors are involved,
1488     //  * the first for the multiply operation, the second for the
1489     //  * addition operation.
1490     //  *
1491     //  * <p>Special cases:
1492     //  * <ul>
1493     //  * <li> If any argument is NaN, the result is NaN.
1494     //  *
1495     //  * <li> If one of the first two arguments is infinite and the
1496     //  * other is zero, the result is NaN.
1497     //  *
1498     //  * <li> If the exact product of the first two arguments is infinite
1499     //  * (in other words, at least one of the arguments is infinite and
1500     //  * the other is neither zero nor NaN) and the third argument is an
1501     //  * infinity of the opposite sign, the result is NaN.
1502     //  *
1503     //  * </ul>
1504     //  *
1505     //  * <p>Note that {@code fma(a, 1.0, c)} returns the same
1506     //  * result as ({@code a + c}).  However,
1507     //  * {@code fma(a, b, +0.0)} does <em>not</em> always return the
1508     //  * same result as ({@code a * b}) since
1509     //  * {@code fma(-0.0, +0.0, +0.0)} is {@code +0.0} while
1510     //  * ({@code -0.0 * +0.0}) is {@code -0.0}; {@code fma(a, b, -0.0)} is
1511     //  * equivalent to ({@code a * b}) however.
1512     //  *
1513     //  * @apiNote This method corresponds to the fusedMultiplyAdd
1514     //  * operation defined in IEEE 754-2008.
1515     //  *
1516     //  * @param a a value
1517     //  * @param b a value
1518     //  * @param c a value
1519     //  *
1520     //  * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1521     //  * computed, as if with unlimited range and precision, and rounded
1522     //  * once to the nearest {@code double} value
1523     //  *
1524     //  */
1525     // @HotSpotIntrinsicCandidate
1526     // static double fma(double a, double b, double c) {
1527     //     /*
1528     //      * Infinity and NaN arithmetic is not quite the same with two
1529     //      * roundings as opposed to just one so the simple expression
1530     //      * "a * b + c" cannot always be used to compute the correct
1531     //      * result.  With two roundings, the product can overflow and
1532     //      * if the addend is infinite, a spurious NaN can be produced
1533     //      * if the infinity from the overflow and the infinite addend
1534     //      * have opposite signs.
1535     //      */
1536 
1537     //     // First, screen for and handle non-finite input values whose
1538     //     // arithmetic is not supported by BigDecimal.
1539     //     if (Double.isNaN(a) || Double.isNaN(b) || Double.isNaN(c)) {
1540     //         return Double.NaN;
1541     //     } else { // All inputs non-NaN
1542     //         boolean infiniteA = Double.isInfinite(a);
1543     //         boolean infiniteB = Double.isInfinite(b);
1544     //         boolean infiniteC = Double.isInfinite(c);
1545     //         double result;
1546 
1547     //         if (infiniteA || infiniteB || infiniteC) {
1548     //             if (infiniteA && b == 0.0 ||
1549     //                 infiniteB && a == 0.0 ) {
1550     //                 return Double.NaN;
1551     //             }
1552     //             // Store product in a double field to cause an
1553     //             // overflow even if non-strictfp evaluation is being
1554     //             // used.
1555     //             double product = a * b;
1556     //             if (Double.isInfinite(product) && !infiniteA && !infiniteB) {
1557     //                 // Intermediate overflow; might cause a
1558     //                 // spurious NaN if added to infinite c.
1559     //                 assert Double.isInfinite(c);
1560     //                 return c;
1561     //             } else {
1562     //                 result = product + c;
1563     //                 assert !Double.isFinite(result);
1564     //                 return result;
1565     //             }
1566     //         } else { // All inputs finite
1567     //             BigDecimal product = (new BigDecimal(a)).multiply(new BigDecimal(b));
1568     //             if (c == 0.0) { // Positive or negative zero
1569     //                 // If the product is an exact zero, use a
1570     //                 // floating-point expression to compute the sign
1571     //                 // of the zero final result. The product is an
1572     //                 // exact zero if and only if at least one of a and
1573     //                 // b is zero.
1574     //                 if (a == 0.0 || b == 0.0) {
1575     //                     return a * b + c;
1576     //                 } else {
1577     //                     // The sign of a zero addend doesn't matter if
1578     //                     // the product is nonzero. The sign of a zero
1579     //                     // addend is not factored in the result if the
1580     //                     // exact product is nonzero but underflows to
1581     //                     // zero; see IEEE-754 2008 section 6.3 "The
1582     //                     // sign bit".
1583     //                     return product.doubleValue();
1584     //                 }
1585     //             } else {
1586     //                 return product.add(new BigDecimal(c)).doubleValue();
1587     //             }
1588     //         }
1589     //     }
1590     // }
1591 
1592     // /**
1593     //  * Returns the fused multiply add of the three arguments; that is,
1594     //  * returns the exact product of the first two arguments summed
1595     //  * with the third argument and then rounded once to the nearest
1596     //  * {@code float}.
1597     //  *
1598     //  * The rounding is done using the {@linkplain
1599     //  * java.math.RoundingMode#HALF_EVEN round to nearest even
1600     //  * rounding mode}.
1601     //  *
1602     //  * In contrast, if {@code a * b + c} is evaluated as a regular
1603     //  * floating-point expression, two rounding errors are involved,
1604     //  * the first for the multiply operation, the second for the
1605     //  * addition operation.
1606     //  *
1607     //  * <p>Special cases:
1608     //  * <ul>
1609     //  * <li> If any argument is NaN, the result is NaN.
1610     //  *
1611     //  * <li> If one of the first two arguments is infinite and the
1612     //  * other is zero, the result is NaN.
1613     //  *
1614     //  * <li> If the exact product of the first two arguments is infinite
1615     //  * (in other words, at least one of the arguments is infinite and
1616     //  * the other is neither zero nor NaN) and the third argument is an
1617     //  * infinity of the opposite sign, the result is NaN.
1618     //  *
1619     //  * </ul>
1620     //  *
1621     //  * <p>Note that {@code fma(a, 1.0f, c)} returns the same
1622     //  * result as ({@code a + c}).  However,
1623     //  * {@code fma(a, b, +0.0f)} does <em>not</em> always return the
1624     //  * same result as ({@code a * b}) since
1625     //  * {@code fma(-0.0f, +0.0f, +0.0f)} is {@code +0.0f} while
1626     //  * ({@code -0.0f * +0.0f}) is {@code -0.0f}; {@code fma(a, b, -0.0f)} is
1627     //  * equivalent to ({@code a * b}) however.
1628     //  *
1629     //  * @apiNote This method corresponds to the fusedMultiplyAdd
1630     //  * operation defined in IEEE 754-2008.
1631     //  *
1632     //  * @param a a value
1633     //  * @param b a value
1634     //  * @param c a value
1635     //  *
1636     //  * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1637     //  * computed, as if with unlimited range and precision, and rounded
1638     //  * once to the nearest {@code float} value
1639     //  *
1640     //  */
1641     // @HotSpotIntrinsicCandidate
1642     // static float fma(float a, float b, float c) {
1643     //     /*
1644     //      *  Since the double format has more than twice the precision
1645     //      *  of the float format, the multiply of a * b is exact in
1646     //      *  double. The add of c to the product then incurs one
1647     //      *  rounding error. Since the double format moreover has more
1648     //      *  than (2p + 2) precision bits compared to the p bits of the
1649     //      *  float format, the two roundings of (a * b + c), first to
1650     //      *  the double format and then secondarily to the float format,
1651     //      *  are equivalent to rounding the intermediate result directly
1652     //      *  to the float format.
1653     //      *
1654     //      * In terms of strictfp vs default-fp concerns related to
1655     //      * overflow and underflow, since
1656     //      *
1657     //      * (Float.MAX_VALUE * Float.MAX_VALUE) << Double.MAX_VALUE
1658     //      * (Float.MIN_VALUE * Float.MIN_VALUE) >> Double.MIN_VALUE
1659     //      *
1660     //      * neither the multiply nor add will overflow or underflow in
1661     //      * double. Therefore, it is not necessary for this method to
1662     //      * be declared strictfp to have reproducible
1663     //      * behavior. However, it is necessary to explicitly store down
1664     //      * to a float variable to avoid returning a value in the float
1665     //      * extended value set.
1666     //      */
1667     //     float result = (float)(((double) a * (double) b ) + (double) c);
1668     //     return result;
1669     // }
1670 
1671     // /**
1672     //  * Returns the size of an ulp of the argument.  An ulp, unit in
1673     //  * the last place, of a {@code double} value is the positive
1674     //  * distance between this floating-point value and the {@code
1675     //  * double} value next larger in magnitude.  Note that for non-NaN
1676     //  * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1677     //  *
1678     //  * <p>Special Cases:
1679     //  * <ul>
1680     //  * <li> If the argument is NaN, then the result is NaN.
1681     //  * <li> If the argument is positive or negative infinity, then the
1682     //  * result is positive infinity.
1683     //  * <li> If the argument is positive or negative zero, then the result is
1684     //  * {@code Double.MIN_VALUE}.
1685     //  * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1686     //  * the result is equal to 2<sup>971</sup>.
1687     //  * </ul>
1688     //  *
1689     //  * @param d the floating-point value whose ulp is to be returned
1690     //  * @return the size of an ulp of the argument
1691     //  * @author Joseph D. Darcy
1692     //  */
1693     // static double ulp(double d) {
1694     //     int exp = getExponent(d);
1695 
1696     //     switch(exp) {
1697     //     case Double.MAX_EXPONENT + 1:       // NaN or infinity
1698     //         return Math.abs(d);
1699 
1700     //     case Double.MIN_EXPONENT - 1:       // zero or subnormal
1701     //         return Double.MIN_VALUE;
1702 
1703     //     default:
1704     //         assert exp <= Double.MAX_EXPONENT && exp >= Double.MIN_EXPONENT;
1705 
1706     //         // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1707     //         exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1);
1708     //         if (exp >= Double.MIN_EXPONENT) {
1709     //             return powerOfTwoD(exp);
1710     //         }
1711     //         else {
1712     //             // return a subnormal result; left shift integer
1713     //             // representation of Double.MIN_VALUE appropriate
1714     //             // number of positions
1715     //             return Double.longBitsToDouble(1L <<
1716     //             (exp - (Double.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) ));
1717     //         }
1718     //     }
1719     // }
1720 
1721     // /**
1722     //  * Returns the size of an ulp of the argument.  An ulp, unit in
1723     //  * the last place, of a {@code float} value is the positive
1724     //  * distance between this floating-point value and the {@code
1725     //  * float} value next larger in magnitude.  Note that for non-NaN
1726     //  * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1727     //  *
1728     //  * <p>Special Cases:
1729     //  * <ul>
1730     //  * <li> If the argument is NaN, then the result is NaN.
1731     //  * <li> If the argument is positive or negative infinity, then the
1732     //  * result is positive infinity.
1733     //  * <li> If the argument is positive or negative zero, then the result is
1734     //  * {@code Float.MIN_VALUE}.
1735     //  * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1736     //  * the result is equal to 2<sup>104</sup>.
1737     //  * </ul>
1738     //  *
1739     //  * @param f the floating-point value whose ulp is to be returned
1740     //  * @return the size of an ulp of the argument
1741     //  * @author Joseph D. Darcy
1742     //  */
1743     // static float ulp(float f) {
1744     //     int exp = getExponent(f);
1745 
1746     //     switch(exp) {
1747     //     case Float.MAX_EXPONENT+1:        // NaN or infinity
1748     //         return Math.abs(f);
1749 
1750     //     case Float.MIN_EXPONENT-1:        // zero or subnormal
1751     //         return Float.MIN_VALUE;
1752 
1753     //     default:
1754     //         assert exp <= Float.MAX_EXPONENT && exp >= Float.MIN_EXPONENT;
1755 
1756     //         // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1757     //         exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1);
1758     //         if (exp >= Float.MIN_EXPONENT) {
1759     //             return powerOfTwoF(exp);
1760     //         } else {
1761     //             // return a subnormal result; left shift integer
1762     //             // representation of FloatConsts.MIN_VALUE appropriate
1763     //             // number of positions
1764     //             return Float.intBitsToFloat(1 <<
1765     //             (exp - (Float.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) ));
1766     //         }
1767     //     }
1768     // }
1769 
1770     // /**
1771     //  * Returns the signum function of the argument; zero if the argument
1772     //  * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1773     //  * argument is less than zero.
1774     //  *
1775     //  * <p>Special Cases:
1776     //  * <ul>
1777     //  * <li> If the argument is NaN, then the result is NaN.
1778     //  * <li> If the argument is positive zero or negative zero, then the
1779     //  *      result is the same as the argument.
1780     //  * </ul>
1781     //  *
1782     //  * @param d the floating-point value whose signum is to be returned
1783     //  * @return the signum function of the argument
1784     //  * @author Joseph D. Darcy
1785     //  */
1786     // static double signum(double d) {
1787     //     return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d);
1788     // }
1789 
1790     // /**
1791     //  * Returns the signum function of the argument; zero if the argument
1792     //  * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1793     //  * argument is less than zero.
1794     //  *
1795     //  * <p>Special Cases:
1796     //  * <ul>
1797     //  * <li> If the argument is NaN, then the result is NaN.
1798     //  * <li> If the argument is positive zero or negative zero, then the
1799     //  *      result is the same as the argument.
1800     //  * </ul>
1801     //  *
1802     //  * @param f the floating-point value whose signum is to be returned
1803     //  * @return the signum function of the argument
1804     //  * @author Joseph D. Darcy
1805     //  */
1806     // static float signum(float f) {
1807     //     return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f);
1808     // }
1809 
1810     // /**
1811     //  * Returns the hyperbolic sine of a {@code double} value.
1812     //  * The hyperbolic sine of <i>x</i> is defined to be
1813     //  * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1814     //  * where <i>e</i> is {@linkplain Math#E Euler's number}.
1815     //  *
1816     //  * <p>Special cases:
1817     //  * <ul>
1818     //  *
1819     //  * <li>If the argument is NaN, then the result is NaN.
1820     //  *
1821     //  * <li>If the argument is infinite, then the result is an infinity
1822     //  * with the same sign as the argument.
1823     //  *
1824     //  * <li>If the argument is zero, then the result is a zero with the
1825     //  * same sign as the argument.
1826     //  *
1827     //  * </ul>
1828     //  *
1829     //  * <p>The computed result must be within 2.5 ulps of the exact result.
1830     //  *
1831     //  * @param   x The number whose hyperbolic sine is to be returned.
1832     //  * @return  The hyperbolic sine of {@code x}.
1833     //  */
1834     // static double sinh(double x) {
1835     //     return StrictMath.sinh(x);
1836     // }
1837 
1838     // /**
1839     //  * Returns the hyperbolic cosine of a {@code double} value.
1840     //  * The hyperbolic cosine of <i>x</i> is defined to be
1841     //  * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1842     //  * where <i>e</i> is {@linkplain Math#E Euler's number}.
1843     //  *
1844     //  * <p>Special cases:
1845     //  * <ul>
1846     //  *
1847     //  * <li>If the argument is NaN, then the result is NaN.
1848     //  *
1849     //  * <li>If the argument is infinite, then the result is positive
1850     //  * infinity.
1851     //  *
1852     //  * <li>If the argument is zero, then the result is {@code 1.0}.
1853     //  *
1854     //  * </ul>
1855     //  *
1856     //  * <p>The computed result must be within 2.5 ulps of the exact result.
1857     //  *
1858     //  * @param   x The number whose hyperbolic cosine is to be returned.
1859     //  * @return  The hyperbolic cosine of {@code x}.
1860     //  */
1861     // static double cosh(double x) {
1862     //     return StrictMath.cosh(x);
1863     // }
1864 
1865     // /**
1866     //  * Returns the hyperbolic tangent of a {@code double} value.
1867     //  * The hyperbolic tangent of <i>x</i> is defined to be
1868     //  * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1869     //  * in other words, {@linkplain Math#sinh
1870     //  * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1871     //  * that the absolute value of the exact tanh is always less than
1872     //  * 1.
1873     //  *
1874     //  * <p>Special cases:
1875     //  * <ul>
1876     //  *
1877     //  * <li>If the argument is NaN, then the result is NaN.
1878     //  *
1879     //  * <li>If the argument is zero, then the result is a zero with the
1880     //  * same sign as the argument.
1881     //  *
1882     //  * <li>If the argument is positive infinity, then the result is
1883     //  * {@code +1.0}.
1884     //  *
1885     //  * <li>If the argument is negative infinity, then the result is
1886     //  * {@code -1.0}.
1887     //  *
1888     //  * </ul>
1889     //  *
1890     //  * <p>The computed result must be within 2.5 ulps of the exact result.
1891     //  * The result of {@code tanh} for any finite input must have
1892     //  * an absolute value less than or equal to 1.  Note that once the
1893     //  * exact result of tanh is within 1/2 of an ulp of the limit value
1894     //  * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
1895     //  * be returned.
1896     //  *
1897     //  * @param   x The number whose hyperbolic tangent is to be returned.
1898     //  * @return  The hyperbolic tangent of {@code x}.
1899     //  */
1900     // static double tanh(double x) {
1901     //     return StrictMath.tanh(x);
1902     // }
1903 
1904     // /**
1905     //  * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1906     //  * without intermediate overflow or underflow.
1907     //  *
1908     //  * <p>Special cases:
1909     //  * <ul>
1910     //  *
1911     //  * <li> If either argument is infinite, then the result
1912     //  * is positive infinity.
1913     //  *
1914     //  * <li> If either argument is NaN and neither argument is infinite,
1915     //  * then the result is NaN.
1916     //  *
1917     //  * </ul>
1918     //  *
1919     //  * <p>The computed result must be within 1 ulp of the exact
1920     //  * result.  If one parameter is held constant, the results must be
1921     //  * semi-monotonic in the other parameter.
1922     //  *
1923     //  * @param x a value
1924     //  * @param y a value
1925     //  * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1926     //  * without intermediate overflow or underflow
1927     //  */
1928     // static double hypot(double x, double y) {
1929     //     return StrictMath.hypot(x, y);
1930     // }
1931 
1932     // /**
1933     //  * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1934     //  * <i>x</i> near 0, the exact sum of
1935     //  * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1936     //  * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1937     //  *
1938     //  * <p>Special cases:
1939     //  * <ul>
1940     //  * <li>If the argument is NaN, the result is NaN.
1941     //  *
1942     //  * <li>If the argument is positive infinity, then the result is
1943     //  * positive infinity.
1944     //  *
1945     //  * <li>If the argument is negative infinity, then the result is
1946     //  * -1.0.
1947     //  *
1948     //  * <li>If the argument is zero, then the result is a zero with the
1949     //  * same sign as the argument.
1950     //  *
1951     //  * </ul>
1952     //  *
1953     //  * <p>The computed result must be within 1 ulp of the exact result.
1954     //  * Results must be semi-monotonic.  The result of
1955     //  * {@code expm1} for any finite input must be greater than or
1956     //  * equal to {@code -1.0}.  Note that once the exact result of
1957     //  * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
1958     //  * ulp of the limit value -1, {@code -1.0} should be
1959     //  * returned.
1960     //  *
1961     //  * @param   x   the exponent to raise <i>e</i> to in the computation of
1962     //  *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1963     //  * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1964     //  */
1965     // static double expm1(double x) {
1966     //     return StrictMath.expm1(x);
1967     // }
1968 
1969     // /**
1970     //  * Returns the natural logarithm of the sum of the argument and 1.
1971     //  * Note that for small values {@code x}, the result of
1972     //  * {@code log1p(x)} is much closer to the true result of ln(1
1973     //  * + {@code x}) than the floating-point evaluation of
1974     //  * {@code log(1.0+x)}.
1975     //  *
1976     //  * <p>Special cases:
1977     //  *
1978     //  * <ul>
1979     //  *
1980     //  * <li>If the argument is NaN or less than -1, then the result is
1981     //  * NaN.
1982     //  *
1983     //  * <li>If the argument is positive infinity, then the result is
1984     //  * positive infinity.
1985     //  *
1986     //  * <li>If the argument is negative one, then the result is
1987     //  * negative infinity.
1988     //  *
1989     //  * <li>If the argument is zero, then the result is a zero with the
1990     //  * same sign as the argument.
1991     //  *
1992     //  * </ul>
1993     //  *
1994     //  * <p>The computed result must be within 1 ulp of the exact result.
1995     //  * Results must be semi-monotonic.
1996     //  *
1997     //  * @param   x   a value
1998     //  * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1999     //  * log of {@code x}&nbsp;+&nbsp;1
2000     //  */
2001     // static double log1p(double x) {
2002     //     return StrictMath.log1p(x);
2003     // }
2004 
2005     // /**
2006     //  * Returns the first floating-point argument with the sign of the
2007     //  * second floating-point argument.  Note that unlike the {@link
2008     //  * StrictMath#copySign(double, double) StrictMath.copySign}
2009     //  * method, this method does not require NaN {@code sign}
2010     //  * arguments to be treated as positive values; implementations are
2011     //  * permitted to treat some NaN arguments as positive and other NaN
2012     //  * arguments as negative to allow greater performance.
2013     //  *
2014     //  * @param magnitude  the parameter providing the magnitude of the result
2015     //  * @param sign   the parameter providing the sign of the result
2016     //  * @return a value with the magnitude of {@code magnitude}
2017     //  * and the sign of {@code sign}.
2018     //  */
2019     // static double copySign(double magnitude, double sign) {
2020     //     return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) &
2021     //                                     (DoubleConsts.SIGN_BIT_MASK)) |
2022     //                                    (Double.doubleToRawLongBits(magnitude) &
2023     //                                     (DoubleConsts.EXP_BIT_MASK |
2024     //                                      DoubleConsts.SIGNIF_BIT_MASK)));
2025     // }
2026 
2027     // /**
2028     //  * Returns the first floating-point argument with the sign of the
2029     //  * second floating-point argument.  Note that unlike the {@link
2030     //  * StrictMath#copySign(float, float) StrictMath.copySign}
2031     //  * method, this method does not require NaN {@code sign}
2032     //  * arguments to be treated as positive values; implementations are
2033     //  * permitted to treat some NaN arguments as positive and other NaN
2034     //  * arguments as negative to allow greater performance.
2035     //  *
2036     //  * @param magnitude  the parameter providing the magnitude of the result
2037     //  * @param sign   the parameter providing the sign of the result
2038     //  * @return a value with the magnitude of {@code magnitude}
2039     //  * and the sign of {@code sign}.
2040     //  */
2041     // static float copySign(float magnitude, float sign) {
2042     //     return Float.intBitsToFloat((Float.floatToRawIntBits(sign) &
2043     //                                  (FloatConsts.SIGN_BIT_MASK)) |
2044     //                                 (Float.floatToRawIntBits(magnitude) &
2045     //                                  (FloatConsts.EXP_BIT_MASK |
2046     //                                   FloatConsts.SIGNIF_BIT_MASK)));
2047     // }
2048 
2049     // /**
2050     //  * Returns the unbiased exponent used in the representation of a
2051     //  * {@code float}.  Special cases:
2052     //  *
2053     //  * <ul>
2054     //  * <li>If the argument is NaN or infinite, then the result is
2055     //  * {@link Float#MAX_EXPONENT} + 1.
2056     //  * <li>If the argument is zero or subnormal, then the result is
2057     //  * {@link Float#MIN_EXPONENT} -1.
2058     //  * </ul>
2059     //  * @param f a {@code float} value
2060     //  * @return the unbiased exponent of the argument
2061     //  */
2062     // static int getExponent(float f) {
2063     //     /*
2064     //      * Bitwise convert f to integer, mask out exponent bits, shift
2065     //      * to the right and then subtract out float's bias adjust to
2066     //      * get true exponent value
2067     //      */
2068     //     return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >>
2069     //             (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS;
2070     // }
2071 
2072     // /**
2073     //  * Returns the unbiased exponent used in the representation of a
2074     //  * {@code double}.  Special cases:
2075     //  *
2076     //  * <ul>
2077     //  * <li>If the argument is NaN or infinite, then the result is
2078     //  * {@link Double#MAX_EXPONENT} + 1.
2079     //  * <li>If the argument is zero or subnormal, then the result is
2080     //  * {@link Double#MIN_EXPONENT} -1.
2081     //  * </ul>
2082     //  * @param d a {@code double} value
2083     //  * @return the unbiased exponent of the argument
2084     //  */
2085     // static int getExponent(double d) {
2086     //     /*
2087     //      * Bitwise convert d to long, mask out exponent bits, shift
2088     //      * to the right and then subtract out double's bias adjust to
2089     //      * get true exponent value.
2090     //      */
2091     //     return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >>
2092     //                   (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS);
2093     // }
2094 
2095     // /**
2096     //  * Returns the floating-point number adjacent to the first
2097     //  * argument in the direction of the second argument.  If both
2098     //  * arguments compare as equal the second argument is returned.
2099     //  *
2100     //  * <p>
2101     //  * Special cases:
2102     //  * <ul>
2103     //  * <li> If either argument is a NaN, then NaN is returned.
2104     //  *
2105     //  * <li> If both arguments are signed zeros, {@code direction}
2106     //  * is returned unchanged (as implied by the requirement of
2107     //  * returning the second argument if the arguments compare as
2108     //  * equal).
2109     //  *
2110     //  * <li> If {@code start} is
2111     //  * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
2112     //  * has a value such that the result should have a smaller
2113     //  * magnitude, then a zero with the same sign as {@code start}
2114     //  * is returned.
2115     //  *
2116     //  * <li> If {@code start} is infinite and
2117     //  * {@code direction} has a value such that the result should
2118     //  * have a smaller magnitude, {@link Double#MAX_VALUE} with the
2119     //  * same sign as {@code start} is returned.
2120     //  *
2121     //  * <li> If {@code start} is equal to &plusmn;
2122     //  * {@link Double#MAX_VALUE} and {@code direction} has a
2123     //  * value such that the result should have a larger magnitude, an
2124     //  * infinity with same sign as {@code start} is returned.
2125     //  * </ul>
2126     //  *
2127     //  * @param start  starting floating-point value
2128     //  * @param direction value indicating which of
2129     //  * {@code start}'s neighbors or {@code start} should
2130     //  * be returned
2131     //  * @return The floating-point number adjacent to {@code start} in the
2132     //  * direction of {@code direction}.
2133     //  */
2134     // static double nextAfter(double start, double direction) {
2135     //     /*
2136     //      * The cases:
2137     //      *
2138     //      * nextAfter(+infinity, 0)  == MAX_VALUE
2139     //      * nextAfter(+infinity, +infinity)  == +infinity
2140     //      * nextAfter(-infinity, 0)  == -MAX_VALUE
2141     //      * nextAfter(-infinity, -infinity)  == -infinity
2142     //      *
2143     //      * are naturally handled without any additional testing
2144     //      */
2145 
2146     //     /*
2147     //      * IEEE 754 floating-point numbers are lexicographically
2148     //      * ordered if treated as signed-magnitude integers.
2149     //      * Since Java's integers are two's complement,
2150     //      * incrementing the two's complement representation of a
2151     //      * logically negative floating-point value *decrements*
2152     //      * the signed-magnitude representation. Therefore, when
2153     //      * the integer representation of a floating-point value
2154     //      * is negative, the adjustment to the representation is in
2155     //      * the opposite direction from what would initially be expected.
2156     //      */
2157 
2158     //     // Branch to descending case first as it is more costly than ascending
2159     //     // case due to start != 0.0d conditional.
2160     //     if (start > direction) { // descending
2161     //         if (start != 0.0d) {
2162     //             final long transducer = Double.doubleToRawLongBits(start);
2163     //             return Double.longBitsToDouble(transducer + ((transducer > 0L) ? -1L : 1L));
2164     //         } else { // start == 0.0d && direction < 0.0d
2165     //             return -Double.MIN_VALUE;
2166     //         }
2167     //     } else if (start < direction) { // ascending
2168     //         // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
2169     //         // then bitwise convert start to integer.
2170     //         final long transducer = Double.doubleToRawLongBits(start + 0.0d);
2171     //         return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
2172     //     } else if (start == direction) {
2173     //         return direction;
2174     //     } else { // isNaN(start) || isNaN(direction)
2175     //         return start + direction;
2176     //     }
2177     // }
2178 
2179     // /**
2180     //  * Returns the floating-point number adjacent to the first
2181     //  * argument in the direction of the second argument.  If both
2182     //  * arguments compare as equal a value equivalent to the second argument
2183     //  * is returned.
2184     //  *
2185     //  * <p>
2186     //  * Special cases:
2187     //  * <ul>
2188     //  * <li> If either argument is a NaN, then NaN is returned.
2189     //  *
2190     //  * <li> If both arguments are signed zeros, a value equivalent
2191     //  * to {@code direction} is returned.
2192     //  *
2193     //  * <li> If {@code start} is
2194     //  * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
2195     //  * has a value such that the result should have a smaller
2196     //  * magnitude, then a zero with the same sign as {@code start}
2197     //  * is returned.
2198     //  *
2199     //  * <li> If {@code start} is infinite and
2200     //  * {@code direction} has a value such that the result should
2201     //  * have a smaller magnitude, {@link Float#MAX_VALUE} with the
2202     //  * same sign as {@code start} is returned.
2203     //  *
2204     //  * <li> If {@code start} is equal to &plusmn;
2205     //  * {@link Float#MAX_VALUE} and {@code direction} has a
2206     //  * value such that the result should have a larger magnitude, an
2207     //  * infinity with same sign as {@code start} is returned.
2208     //  * </ul>
2209     //  *
2210     //  * @param start  starting floating-point value
2211     //  * @param direction value indicating which of
2212     //  * {@code start}'s neighbors or {@code start} should
2213     //  * be returned
2214     //  * @return The floating-point number adjacent to {@code start} in the
2215     //  * direction of {@code direction}.
2216     //  */
2217     // static float nextAfter(float start, double direction) {
2218     //     /*
2219     //      * The cases:
2220     //      *
2221     //      * nextAfter(+infinity, 0)  == MAX_VALUE
2222     //      * nextAfter(+infinity, +infinity)  == +infinity
2223     //      * nextAfter(-infinity, 0)  == -MAX_VALUE
2224     //      * nextAfter(-infinity, -infinity)  == -infinity
2225     //      *
2226     //      * are naturally handled without any additional testing
2227     //      */
2228 
2229     //     /*
2230     //      * IEEE 754 floating-point numbers are lexicographically
2231     //      * ordered if treated as signed-magnitude integers.
2232     //      * Since Java's integers are two's complement,
2233     //      * incrementing the two's complement representation of a
2234     //      * logically negative floating-point value *decrements*
2235     //      * the signed-magnitude representation. Therefore, when
2236     //      * the integer representation of a floating-point value
2237     //      * is negative, the adjustment to the representation is in
2238     //      * the opposite direction from what would initially be expected.
2239     //      */
2240 
2241     //     // Branch to descending case first as it is more costly than ascending
2242     //     // case due to start != 0.0f conditional.
2243     //     if (start > direction) { // descending
2244     //         if (start != 0.0f) {
2245     //             final int transducer = Float.floatToRawIntBits(start);
2246     //             return Float.intBitsToFloat(transducer + ((transducer > 0) ? -1 : 1));
2247     //         } else { // start == 0.0f && direction < 0.0f
2248     //             return -Float.MIN_VALUE;
2249     //         }
2250     //     } else if (start < direction) { // ascending
2251     //         // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
2252     //         // then bitwise convert start to integer.
2253     //         final int transducer = Float.floatToRawIntBits(start + 0.0f);
2254     //         return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
2255     //     } else if (start == direction) {
2256     //         return (float)direction;
2257     //     } else { // isNaN(start) || isNaN(direction)
2258     //         return start + (float)direction;
2259     //     }
2260     // }
2261 
2262     // /**
2263     //  * Returns the floating-point value adjacent to {@code d} in
2264     //  * the direction of positive infinity.  This method is
2265     //  * semantically equivalent to {@code nextAfter(d,
2266     //  * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
2267     //  * implementation may run faster than its equivalent
2268     //  * {@code nextAfter} call.
2269     //  *
2270     //  * <p>Special Cases:
2271     //  * <ul>
2272     //  * <li> If the argument is NaN, the result is NaN.
2273     //  *
2274     //  * <li> If the argument is positive infinity, the result is
2275     //  * positive infinity.
2276     //  *
2277     //  * <li> If the argument is zero, the result is
2278     //  * {@link Double#MIN_VALUE}
2279     //  *
2280     //  * </ul>
2281     //  *
2282     //  * @param d starting floating-point value
2283     //  * @return The adjacent floating-point value closer to positive
2284     //  * infinity.
2285     //  */
2286     // static double nextUp(double d) {
2287     //     // Use a single conditional and handle the likely cases first.
2288     //     if (d < Double.POSITIVE_INFINITY) {
2289     //         // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
2290     //         final long transducer = Double.doubleToRawLongBits(d + 0.0D);
2291     //         return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
2292     //     } else { // d is NaN or +Infinity
2293     //         return d;
2294     //     }
2295     // }
2296 
2297     // /**
2298     //  * Returns the floating-point value adjacent to {@code f} in
2299     //  * the direction of positive infinity.  This method is
2300     //  * semantically equivalent to {@code nextAfter(f,
2301     //  * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
2302     //  * implementation may run faster than its equivalent
2303     //  * {@code nextAfter} call.
2304     //  *
2305     //  * <p>Special Cases:
2306     //  * <ul>
2307     //  * <li> If the argument is NaN, the result is NaN.
2308     //  *
2309     //  * <li> If the argument is positive infinity, the result is
2310     //  * positive infinity.
2311     //  *
2312     //  * <li> If the argument is zero, the result is
2313     //  * {@link Float#MIN_VALUE}
2314     //  *
2315     //  * </ul>
2316     //  *
2317     //  * @param f starting floating-point value
2318     //  * @return The adjacent floating-point value closer to positive
2319     //  * infinity.
2320     //  */
2321     // static float nextUp(float f) {
2322     //     // Use a single conditional and handle the likely cases first.
2323     //     if (f < Float.POSITIVE_INFINITY) {
2324     //         // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
2325     //         final int transducer = Float.floatToRawIntBits(f + 0.0F);
2326     //         return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
2327     //     } else { // f is NaN or +Infinity
2328     //         return f;
2329     //     }
2330     // }
2331 
2332     // /**
2333     //  * Returns the floating-point value adjacent to {@code d} in
2334     //  * the direction of negative infinity.  This method is
2335     //  * semantically equivalent to {@code nextAfter(d,
2336     //  * Double.NEGATIVE_INFINITY)}; however, a
2337     //  * {@code nextDown} implementation may run faster than its
2338     //  * equivalent {@code nextAfter} call.
2339     //  *
2340     //  * <p>Special Cases:
2341     //  * <ul>
2342     //  * <li> If the argument is NaN, the result is NaN.
2343     //  *
2344     //  * <li> If the argument is negative infinity, the result is
2345     //  * negative infinity.
2346     //  *
2347     //  * <li> If the argument is zero, the result is
2348     //  * {@code -Double.MIN_VALUE}
2349     //  *
2350     //  * </ul>
2351     //  *
2352     //  * @param d  starting floating-point value
2353     //  * @return The adjacent floating-point value closer to negative
2354     //  * infinity.
2355     //  */
2356     // static double nextDown(double d) {
2357     //     if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
2358     //         return d;
2359     //     else {
2360     //         if (d == 0.0)
2361     //             return -Double.MIN_VALUE;
2362     //         else
2363     //             return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
2364     //                                            ((d > 0.0d)?-1L:+1L));
2365     //     }
2366     // }
2367 
2368     // /**
2369     //  * Returns the floating-point value adjacent to {@code f} in
2370     //  * the direction of negative infinity.  This method is
2371     //  * semantically equivalent to {@code nextAfter(f,
2372     //  * Float.NEGATIVE_INFINITY)}; however, a
2373     //  * {@code nextDown} implementation may run faster than its
2374     //  * equivalent {@code nextAfter} call.
2375     //  *
2376     //  * <p>Special Cases:
2377     //  * <ul>
2378     //  * <li> If the argument is NaN, the result is NaN.
2379     //  *
2380     //  * <li> If the argument is negative infinity, the result is
2381     //  * negative infinity.
2382     //  *
2383     //  * <li> If the argument is zero, the result is
2384     //  * {@code -Float.MIN_VALUE}
2385     //  *
2386     //  * </ul>
2387     //  *
2388     //  * @param f  starting floating-point value
2389     //  * @return The adjacent floating-point value closer to negative
2390     //  * infinity.
2391     //  */
2392     // static float nextDown(float f) {
2393     //     if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
2394     //         return f;
2395     //     else {
2396     //         if (f == 0.0f)
2397     //             return -Float.MIN_VALUE;
2398     //         else
2399     //             return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
2400     //                                         ((f > 0.0f)?-1:+1));
2401     //     }
2402     // }
2403 
2404     // /**
2405     //  * Returns {@code d} &times;
2406     //  * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2407     //  * by a single correctly rounded floating-point multiply to a
2408     //  * member of the double value set.  See the Java
2409     //  * Language Specification for a discussion of floating-point
2410     //  * value sets.  If the exponent of the result is between {@link
2411     //  * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
2412     //  * answer is calculated exactly.  If the exponent of the result
2413     //  * would be larger than {@code Double.MAX_EXPONENT}, an
2414     //  * infinity is returned.  Note that if the result is subnormal,
2415     //  * precision may be lost; that is, when {@code scalb(x, n)}
2416     //  * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2417     //  * <i>x</i>.  When the result is non-NaN, the result has the same
2418     //  * sign as {@code d}.
2419     //  *
2420     //  * <p>Special cases:
2421     //  * <ul>
2422     //  * <li> If the first argument is NaN, NaN is returned.
2423     //  * <li> If the first argument is infinite, then an infinity of the
2424     //  * same sign is returned.
2425     //  * <li> If the first argument is zero, then a zero of the same
2426     //  * sign is returned.
2427     //  * </ul>
2428     //  *
2429     //  * @param d number to be scaled by a power of two.
2430     //  * @param scaleFactor power of 2 used to scale {@code d}
2431     //  * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
2432     //  */
2433     // static double scalb(double d, int scaleFactor) {
2434     //     /*
2435     //      * This method does not need to be declared strictfp to
2436     //      * compute the same correct result on all platforms.  When
2437     //      * scaling up, it does not matter what order the
2438     //      * multiply-store operations are done; the result will be
2439     //      * finite or overflow regardless of the operation ordering.
2440     //      * However, to get the correct result when scaling down, a
2441     //      * particular ordering must be used.
2442     //      *
2443     //      * When scaling down, the multiply-store operations are
2444     //      * sequenced so that it is not possible for two consecutive
2445     //      * multiply-stores to return subnormal results.  If one
2446     //      * multiply-store result is subnormal, the next multiply will
2447     //      * round it away to zero.  This is done by first multiplying
2448     //      * by 2 ^ (scaleFactor % n) and then multiplying several
2449     //      * times by 2^n as needed where n is the exponent of number
2450     //      * that is a covenient power of two.  In this way, at most one
2451     //      * real rounding error occurs.  If the double value set is
2452     //      * being used exclusively, the rounding will occur on a
2453     //      * multiply.  If the double-extended-exponent value set is
2454     //      * being used, the products will (perhaps) be exact but the
2455     //      * stores to d are guaranteed to round to the double value
2456     //      * set.
2457     //      *
2458     //      * It is _not_ a valid implementation to first multiply d by
2459     //      * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor %
2460     //      * MIN_EXPONENT) since even in a strictfp program double
2461     //      * rounding on underflow could occur; e.g. if the scaleFactor
2462     //      * argument was (MIN_EXPONENT - n) and the exponent of d was a
2463     //      * little less than -(MIN_EXPONENT - n), meaning the final
2464     //      * result would be subnormal.
2465     //      *
2466     //      * Since exact reproducibility of this method can be achieved
2467     //      * without any undue performance burden, there is no
2468     //      * compelling reason to allow double rounding on underflow in
2469     //      * scalb.
2470     //      */
2471 
2472     //     // magnitude of a power of two so large that scaling a finite
2473     //     // nonzero value by it would be guaranteed to over or
2474     //     // underflow; due to rounding, scaling down takes an
2475     //     // additional power of two which is reflected here
2476     //     final int MAX_SCALE = Double.MAX_EXPONENT + -Double.MIN_EXPONENT +
2477     //                           DoubleConsts.SIGNIFICAND_WIDTH + 1;
2478     //     int exp_adjust = 0;
2479     //     int scale_increment = 0;
2480     //     double exp_delta = Double.NaN;
2481 
2482     //     // Make sure scaling factor is in a reasonable range
2483 
2484     //     if(scaleFactor < 0) {
2485     //         scaleFactor = Math.max(scaleFactor, -MAX_SCALE);
2486     //         scale_increment = -512;
2487     //         exp_delta = twoToTheDoubleScaleDown;
2488     //     }
2489     //     else {
2490     //         scaleFactor = Math.min(scaleFactor, MAX_SCALE);
2491     //         scale_increment = 512;
2492     //         exp_delta = twoToTheDoubleScaleUp;
2493     //     }
2494 
2495     //     // Calculate (scaleFactor % +/-512), 512 = 2^9, using
2496     //     // technique from "Hacker's Delight" section 10-2.
2497     //     int t = (scaleFactor >> 9-1) >>> 32 - 9;
2498     //     exp_adjust = ((scaleFactor + t) & (512 -1)) - t;
2499 
2500     //     d *= powerOfTwoD(exp_adjust);
2501     //     scaleFactor -= exp_adjust;
2502 
2503     //     while(scaleFactor != 0) {
2504     //         d *= exp_delta;
2505     //         scaleFactor -= scale_increment;
2506     //     }
2507     //     return d;
2508     // }
2509 
2510     // /**
2511     //  * Returns {@code f} &times;
2512     //  * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2513     //  * by a single correctly rounded floating-point multiply to a
2514     //  * member of the float value set.  See the Java
2515     //  * Language Specification for a discussion of floating-point
2516     //  * value sets.  If the exponent of the result is between {@link
2517     //  * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
2518     //  * answer is calculated exactly.  If the exponent of the result
2519     //  * would be larger than {@code Float.MAX_EXPONENT}, an
2520     //  * infinity is returned.  Note that if the result is subnormal,
2521     //  * precision may be lost; that is, when {@code scalb(x, n)}
2522     //  * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2523     //  * <i>x</i>.  When the result is non-NaN, the result has the same
2524     //  * sign as {@code f}.
2525     //  *
2526     //  * <p>Special cases:
2527     //  * <ul>
2528     //  * <li> If the first argument is NaN, NaN is returned.
2529     //  * <li> If the first argument is infinite, then an infinity of the
2530     //  * same sign is returned.
2531     //  * <li> If the first argument is zero, then a zero of the same
2532     //  * sign is returned.
2533     //  * </ul>
2534     //  *
2535     //  * @param f number to be scaled by a power of two.
2536     //  * @param scaleFactor power of 2 used to scale {@code f}
2537     //  * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
2538     //  */
2539     // static float scalb(float f, int scaleFactor) {
2540     //     // magnitude of a power of two so large that scaling a finite
2541     //     // nonzero value by it would be guaranteed to over or
2542     //     // underflow; due to rounding, scaling down takes an
2543     //     // additional power of two which is reflected here
2544     //     final int MAX_SCALE = Float.MAX_EXPONENT + -Float.MIN_EXPONENT +
2545     //                           FloatConsts.SIGNIFICAND_WIDTH + 1;
2546 
2547     //     // Make sure scaling factor is in a reasonable range
2548     //     scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE);
2549 
2550     //     /*
2551     //      * Since + MAX_SCALE for float fits well within the double
2552     //      * exponent range and + float -> double conversion is exact
2553     //      * the multiplication below will be exact. Therefore, the
2554     //      * rounding that occurs when the double product is cast to
2555     //      * float will be the correctly rounded float result.  Since
2556     //      * all operations other than the final multiply will be exact,
2557     //      * it is not necessary to declare this method strictfp.
2558     //      */
2559     //     return (float)((double)f*powerOfTwoD(scaleFactor));
2560     // }
2561 
2562     // // Constants used in scalb
2563     // static double twoToTheDoubleScaleUp = powerOfTwoD(512);
2564     // static double twoToTheDoubleScaleDown = powerOfTwoD(-512);
2565 
2566     // /**
2567     //  * Returns a floating-point power of two in the normal range.
2568     //  */
2569     // static double powerOfTwoD(int n) {
2570     //     assert(n >= Double.MIN_EXPONENT && n <= Double.MAX_EXPONENT);
2571     //     return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) <<
2572     //                                     (DoubleConsts.SIGNIFICAND_WIDTH-1))
2573     //                                    & DoubleConsts.EXP_BIT_MASK);
2574     // }
2575 
2576     // /**
2577     //  * Returns a floating-point power of two in the normal range.
2578     //  */
2579     // static float powerOfTwoF(int n) {
2580     //     assert(n >= Float.MIN_EXPONENT && n <= Float.MAX_EXPONENT);
2581     //     return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) <<
2582     //                                  (FloatConsts.SIGNIFICAND_WIDTH-1))
2583     //                                 & FloatConsts.EXP_BIT_MASK);
2584     // }
2585 }